# LaTeX Cookbook

### Inline and Displayed Formulas

 $x=\frac{1+y}{1+2z^2}$ (inline) $$x=\frac{1+y}{1+2z^2}$$ (displayed) $\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$ (inline) $$\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$$ (displayed) $\displaystyle \int_0^\infty e^{-x^2} dx$ (inline) $$\frac{1}{\displaystyle 1+ \frac{1}{\displaystyle 2+ \frac{1}{\displaystyle 3+x}}} + \frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}$$

### Spaces and Text in Formulas

 $\sqrt{2} \sin x$, $\sqrt{2}\,\sin x$ $\int \!\! \int f(x,y)\,\mathrm{d}x\mathrm{d}y$ $$\mathop{\int \!\!\! \int}_{\mathbf{x} \in \mathbf{R}^2} \! \langle \mathbf{x},\mathbf{y}\rangle \,d\mathbf{x}$$ $$x_1 = a+b \mbox{ and } x_2=a-b$$ $$x_1 = a+b ~~\mbox{and}~~ x_2=a-b$$

### Multiple Line Equations

 \begin{eqnarray} y &=& x^4 + 4 \nonumber \\ &=& (x^2+2)^2 -4x^2 \nonumber \\ &\le&(x^2+2)^2 \end{eqnarray} \begin{eqnarray*} e^x &\approx& 1+x+x^2/2! + \\ && {}+x^3/3! + x^4/4! + \\ && + x^5/5! \end{eqnarray*} \begin{eqnarray*} \lefteqn{w+x+y+z = }\\ && a+b+c+d+e+\\ && {}+f+g+h+i \end{eqnarray*} \begin{eqnarray*} x&=&\sin \alpha = \cos \beta\\ &=&\cos(\pi-\alpha) = \sin(\pi-\beta) \end{eqnarray*} {\setlength\arraycolsep{0.1em} \begin{eqnarray*} x&=&\sin \alpha = \cos \beta\\ &=&\cos(\pi-\alpha) = \sin(\pi-\beta) \end{eqnarray*} } $$\setlength\arraycolsep{0.1em} \begin{array}{rclcl} x&=&\sin \alpha &=& \cos \beta\\ &=&\cos(\pi-\alpha) &=& \sin(\pi-\beta) \end{array}$$

### Formula Numbering

 $$x=y+3 \label{eq:xdef}$$ In equation (\ref{eq:xdef}) we saw $\dots$ \usepackage{leqno} ... $$x=y+3 \label{eq:xdef}$$ In equation (\ref{eq:xdef}) we saw $\dots$ $$\begin{array}{l} \displaystyle \int 1 = x + C\\ \displaystyle \int x = \frac{x^2}{2} + C \\ \displaystyle \int x^2 = \frac{x^3}{3} + C \end{array} \label{eq:xdef}$$ \begin{eqnarray} && \int 1 = x + C \nonumber\\ && \int x = \frac{x^2}{2} + C \nonumber\\ && \int x^2 = \frac{x^3}{3} + C \label{eq:xdef} \end{eqnarray}

### Braces

 $\left] 0,1 \right[ + \lceil x \rfloor - \langle x,y\rangle$ $${n+1\choose k} = {n\choose k} + {n \choose k-1}$$ $$|x| = \left\{ \begin{array}{rl} -x &\mbox{ if x<0} \\ x &\mbox{ otherwise} \end{array} \right.$$ $$F(x,y)=0 ~~\mbox{and}~~ \left| \begin{array}{ccc} F''_{xx} & F''_{xy} & F'_x \\ F''_{yx} & F''_{yy} & F'_y \\ F'_x & F'_y & 0 \end{array}\right| = 0$$ $$\underbrace{n(n-1)(n-2)\dots(n-m+1)}_ {\mbox{total of m factors}}$$

### Accents

 Accents in text mode: gar\c con \'\i{} i t\o\'s\.g\^o na\"\i ve na\"ive Ha\v cek \r Angstr\"om Accents in math mode: $\hat{x}$, $\check{x}$, $\tilde{a}$, $\bar{\ell}$, $\dot{y}$, $\ddot{y}$, $\vec{z_1}$, $\vec{z}_1$ Wide accents, under and overline: $\hat{T} = \widehat{T}$, $\bar{T} = \overline{T}$, $\widetilde{xyz}$, $\overbrace{a+\underbrace{b+c}+d}$ $$\overline{\overline{a}^2+\underline{xy} +\overline{\overline{z}}}$$  Sub and superscripts to braces:$$\underbrace{a+\overbrace{b+\cdots}^{{}=t}+z} _{\mathrm{total}} ~~ a+{\overbrace{b+\cdots}}^{126}+z$$`