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Abstract
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In many stochastic dynamic models in economics, agents�behavior follows a Markov process.

In such models, due to unremitting uncertainty the economy never settles down to a deterministic

�rest point.�Therefore it is often more convenient to consider a rest point in the stochastic sense,

i.e., a distribution to which the economy eventually converges for any initial condition. Such a

stable distribution, if exists, can be viewed as the long run equilibrium in a stochastic dynamic

model.

This paper studies the existence of stable distributions for a class of Markov processes de�ned

on a non-compact state space. Allowing the state space to be non-compact is important for many

economic applications. For example, consider the dynamic macroeconomic models used in consump-

tion theory, economic growth and asset pricing. In many of these models, consumers have power

utility preferences and shocks are lognormally distributed, a combination that by construction leads

to an unbounded state space.

Determining whether a stable distribution exists in these non-compact models is useful both

for theoretical and applied reasons. From a theoretical perspective, such results help characterize

whether long term behavior is stationary or explosive, which in turn has further economic implica-

tions. For an example, consider the main application of this paper, the bu¤er stock saving model

analyzed in more detail below. When this model has a stable invariant distribution, consumption

is mean reverting, and hence bu¤er stock behavior obtains (as in Carroll, 1997); in particular,

consumption growth is predictable and excessively sensitive to temporary shocks. In contrast,

when there is no stable invariant distribution, eventually consumption becomes a random walk (as

in Hall, 1978), and therefore, in the long run, the standard permanent income hypothesis holds:

consumption is unpredictable and not excessively sensitive. Thus, in this model, whether a stable

invariant distribution exists has strong implications for long term consumption behavior.

From an applied perspective, stable distributions can matter for the validity of numerical so-

lutions. In practice, numerically solving macroeconomic models requires imposing bounds on the

realizations of shocks, resulting in a compact state space. For these numerical predictions to ap-

proximate the original model, the simulated and the original economies should have similar long

term behavior. Typically, compactness implies that a stable invariant distribution exists in the

numerically solved economy; hence numerical predictions are likely to be misleading if the original

model leads to non-stationary behavior. In this case, the seemingly stationary dynamics in the sim-

ulations also depend on the way bounds are imposed on the state space, and therefore predictions
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are partly determined by numerical details and not by the underlying economic content. In these

circumstances, theoretical results about invariant distributions help identify the �right�numerical

model that matches long term behavior.

In this paper, I study the existence of stable distributions for Markov processes that are in-

creasing in a probabilistic sense: loosely when the process is started from a higher initial value,

it assumes large values with higher probability. In an in�uential paper, Hopenhayn and Prescott

(1992) studied the existence and stability of invariant distributions for increasing Markov processes

on a compact state space. In this paper I establish analogous results for non-compact spaces; de-

velop conditions allowing to check for stable invariant distributions relatively easily in applications;

and then use these conditions to characterize stable invariant distributions in bu¤er-stock saving

and stochastic growth models.

In Section 1 of the paper, I show that an increasing Markov process has a stable distribution if

two conditions hold. The �rst of these, which I call uniform asymptotic tightness, is a new condition

developed in this paper. Intuitively, this condition ensures that the process does not escape to

in�nity in a probabilistic sense, and hence serves as a replacement of the compactness requirement

in earlier work. In particular, uniform asymptotic tightness is automatically satis�ed if the state

space is compact. My second su¢ cient condition is a weak mixing requirement, which relaxes the

mixing condition of Hopenhayn and Prescott (1992). Because the processes I consider need not be

continuous, stability does not imply invariance; however, I also establish simple conditions under

which the stable distributions I �nd are also invariant. Moreover, I show that, except for a small

set of increasing Markov processes, the existence of a stable invariant distribution implies both

asymptotic tightness and weak mixing, and hence these conditions are not only su¢ cient, but also

�almost necessary.�

Also in Section 1, I develop simple conditions to verify uniform asymptotic tightness in appli-

cations. These conditions are based on the idea that a random walk with a negative drift and a

lower bound will not escape to in�nity; and that any process which is bounded by such a random

walk is thus asymptotically uniformly tight. The applicability of these conditions comes from the

fact that in many stochastic dynamic problems in economics, optimal choices evolve according to

random walks (Hall, 1978), or, in the presence of constraints, can be bounded by such random

walks. My conditions are also relatively easy to check, as they only require verifying that the

mean of innovations is negative.

Section 2 presents two applications. First, in my main application, I consider a bu¤er-stock
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saving model similar to Carroll (1997) and Haliassos and Michaelides (2003).1 Carroll has conjec-

tured that under some conditions a stable invariant distribution exists in these models, but except

for some restrictive special cases (Clarida 1987, Schechtman and Escudero 1976), the result has not

been proved.2 This is in part because the state space in these models is not compact, and hence

results like Hopenhayn and Prescott�s do not apply. Using the theoretical tools described above,

I provide an essentially complete characterization of the parameters for which a stable invariant

distribution exists. Loosely, I �nd that a stable invariant distribution exists if and only if consump-

tion growth in an auxiliary economy with no labor income is lower than labor income growth in

the original model. Intuitively, when the consumption of the bu¤er stock agent is high relative to

his current income, his behavior is well-approximated by the auxiliary model with no labor income.

If consumption growth in the auxiliary model is smaller then income growth in the bu¤er stock

model, then the consumption to income ratio is expected to fall, leading to mean-reversion. In

contrast, if the opposite inequality holds then consumption is expected to increase further relative

to income, and in the long term consumption follows a random walk.

In practice, comparing these two growth rates is a relatively simple task, because the auxiliary

model is a version of the Merton consumption problem, which has a known solution. In the

special case when the bu¤er stock consumer can only invest in a safe �nancial asset (as in Carroll,

1997), the result implies that an invariant distribution always exists under the standard impatience

requirement imposed in the literature to ensure that the consumer�s problem has a solution. In

contrast, when there is a risky investment opportunity as well, as in Haliassos and Michaelides

(2003), the condition required for a stable invariant distribution is more stringent than the standard

impatience condition, and hence there are cases where the model has a solution and yet no invariant

distribution exists.

To see the implications of these results for consumption behavior, note that when a stable

invariant distribution exists, the consumption to income ratio is mean reverting. It follows that

high values of consumption per income must predict lower subsequent consumption growth, to

bring down this ratio to its long term steady state. In particular, a positive temporary shock that

raises the consumption to income ratio must lead to lower consumption growth in the future, i.e.,

1There is a large literature on bu¤er stock savings models, including Deaton (1991), Carroll (1997, 2004), Gour-
inchas and Parker (2002), Haliassos and Michaelides (2003) and Ludvigson and Michaelides (2001) among others.

2Clarida (1987) derives the result for bounded utility and marginal utility (which excludes the use of constant
relative risk aversion utility), and no permanent shocks. Schechtman and Escudero (1976) focus on a case where
the state space is compact. See also Deaton and Laroque (1992) for a related model of commodity prices, where an
invariant distribution exists also by compactness.
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the immediate consumption response to the shock is �too large.� Thus, when a stable invariant

distribution exists, consumption growth is predictable and displays excess sensitivity to temporary

shocks, both of which are key features of bu¤er stock behavior. In contrast, for the parameters

where no invariant distribution exists, behavior converges to the solution of the Merton consumption

problem and hence consumption becomes an unpredictable random walk with no excess sensitivity,

as in the standard permanent income hypothesis. The fact that with a risky asset, the model may

generate either bu¤er stock behavior or a random walk emphasizes the importance of determining

whether an invariant distribution exists, and calls for caution in simulations with truncated shocks

that necessarily yield stationary behavior.

The results about a stable invariant distribution also have some direct implications for applied

work. Carroll (1997, 2004) argues that when a stable invariant distribution exists, the growth rates

of aggregate consumption and income are equal, which helps explain the �consumption/income

parallel� of Carroll and Summers (1991) and has implications for estimating Euler equations in

practice. A stable invariant distribution is also useful for computational reasons: Haliassos and

Michaelides use the invariant wealth distribution to compute time-series and population averages

of endogenous variables such as consumption.

As a second illustrative application of the theoretical results, I consider the one-sector growth

model of Brock and Mirman (1972). The existence and stability of an invariant distribution was

analyzed by Brock and Mirman in their original paper, and in much subsequent work.3 This

research generally focuses on the case where the capital stock is limited to a bounded interval, and

where technology shocks are bounded both above and below. More recently, Stachurski (2002),

Kamihigashi (2007) and Zhang (2007) derive the existence and stability of an invariant distribution

with unbounded shock and capital stock, under the assumption that either the technology shocks

enter the production function multiplicatively or the shock distribution is absolutely continuous.

Using the tools developed in this paper, I establish the existence of a stable invariant distribution

for log-supermodular production functions, under weaker assumptions about the distribution of the

shock than these papers.

This paper builds on and contributes to the literature on invariant distributions of Markov

processes. The current paper is a revised version of my 2008 working paper, which established

the results on stability, but stated, erroneously, that that my proof of stability implies invariance

3See for example Mirman (1973), Mirman and Zilcha (1975) , Razin and Yahav (1979), Stokey, Lucas and Prescott
(1989) and Hopenhayn and Prescott (1992).
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without additional conditions.4 My current draft �xes this mistake, but otherwise is very similar

to the previous version. In a very nice working paper, Kamihigashi and Stachurski (2012)�

written subsequent to, but indendently of my 2008 draft� establish existence and stability results

under slightly weaker conditions than mine, on the way toward their main contribution, the study

of ergodic properties. Relative to their work, the main contributions of the present paper lie in

developing conditions for stability which are easy to verify in applications, and in the bu¤er-stock

savings application.

Also related is the work of Bhattacharya and Lee (1988), which develops existence and unique-

ness results for increasing Markov processes on non-compact state spaces. Their results make use

of a fairly strong mixing condition which is not satis�ed in the two applications considered in this

paper, and which is unlikely to hold in many economic applications. Torres (1990) explores the

existence of invariant distributions in non-compact state spaces, but does not study stability.

1 Invariant Distributions of Markov Processes

1.1 Preliminaries

My goal is to study the stable distributions of Markov processes that take on potentially unbounded

values. Let C � RN be a closed but not necessarily compact set, and consider a Markov process

xt, t = 0, 1, 2,..., that assumes values in C. The dynamic of this process is characterized by a

transition function P : C � B ! [0; 1], where B denotes the collection of Borel sets in RN . The

transition function is de�ned such that for each x 2 C and A 2 B, the conditional probability that

xt+1 2 A given that xt = x is P (x;A). I assume that for all x 2 C, P (x; :) is a probability measure

that satis�es P (x;C) = 1, and that for all A 2 B, P (:; A) is a measurable function. The n-step

transition function Pn (x;A) is de�ned analogously to be the conditional probability that xt+n 2 A

given that xt = x.

For any probability measure � over C, de�ne the measure T �� as

(T ��)(A) =

Z
C
P (z;A)�(dz): (1)

With this notation, the Markov process induces a transition operator T � on the set of probability

measures over C. Intuitively, (T ��) (A) is the probability that next period the process is in the set

4 I thank John Stachurski for pointing out that in my previous draft invariance follows only under the Feller
property.
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A provided that this period its value is drawn according to �.5

The process P is Feller if for any sequence xn ! x in RN , the probability distributions P (xn; :)

converge weakly to P (x; :).6 Intuitively, small variation in the state today induces small variation

in the conditional distribution of the state tomorrow.

A probability distribution � on C is an invariant distribution of the process xt if T �� = �. The

process xt started from an initial distribution � converges to a distribution � if the sequence of

probability measures T �n� for n = 1, 2, 3,... converges weakly to �. A distribution � is stable if

the process converges to � for any initial distribution � on C. Note, in this de�nition we do not

require that the stable distribution itself be invariant. However, if the Markov process is Feller, it

is easy to see that a stable distribution has to be invariant. Also, note that, by de�nition, a stable

invariant distribution, if it exists, must be unique.

For two probability distributions � and �0 on RN , write � � �0 if � dominates �0 in the sense

of �rst order stochastic dominance, that is, if

Z
RN
fd� �

Z
RN
fd�0

holds for all bounded, increasing functions f : RN ! R. The Markov process associated with the

transition function P is increasing if for all x and x0 in C, x � x0 implies P (x; :) � P (x0; :).

In the analysis below, I assume for simplicity that the set C on which the Markov process is de-

�ned is an �interval set�of the form [a; b], [a; b), (a; b] or (a; b), where a and b are two N -dimensional

vectors with coordinates that are permitted to be in�nite. Here [a; b] =
�
x 2 RN ja � x � b

	
,

[a; b) =
�
x 2 RN ja � x < b

	
and (a; b] and (a; b) are de�ned analogously. Interval sets commonly

used in economic applications include R and [0;1).7

I say that the process P has a probabilistic lower bound if there exists a distribution � such

that T �� � �. Similarly, the process has a probabilistic upper bound if there exists a distribution �

such that T �� � �. Using the notation that �x stands for the probability distribution concentrated

on x, it is easy to see that when C is a compact interval set [a; b], � = �a and � = �b serve as

probabilistic lower and upper bounds. As I show in the applications, such bounds often exist even

5 I follow the literature in denoting this operator by T � (see e.g., Stokey, Lucas and Prescott, 1989). The reason
for the star superscript is that T � is the adjoint of an operator T which is introduced in the appendix.

6A sequence of probability measures �j are weakly convergent with limit � i¤ for all bounded continuous functions
f , limj!1

R
fd�j =

R
fd�.

7For a Markov process de�ned on a non-interval set, one can proceed by �rst extending the process to an interval
set and then applying the results of this paper. The extension is often trivial, thus focusing on interval sets is a small
restriction in practice.
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if the more interesting case when the state space is not compact.

1.2 Existence of a Stable Distribution

This section presents su¢ cient conditions for the existence of a stable distribution for increasing

Markov processes. Stating the result requires two de�nitions.

De�nition 1 A Markov process with transition function P (x;A) satis�es uniform asymptotic

tightness if for all � > 0 there exists a compact set C� � C such that limn!1 inf Pn (x;C�) > 1� �

for all x 2 C.

To understand the de�nition, recall the concept of tightness from probability theory (e.g.,

Billingsley, 1995): a sequence of probability measures �n is tight if for all � > 0, there exists

a compact set C� such that �n (C�) > 1 � � for all n. Intuitively, tightness is a condition that

prevents the mass of the probability distributions �n from �escaping to in�nity�(Billingsley, 1995).

Uniform asymptotic tightness requires that the sequence of probability measures Pn (x; :) be tight,

and moreover that the tightness condition holds with the same C� sets for all x as n ! 1. This

condition thus ensures that the dynamics of the Markov process is prevented from escaping to

in�nity uniformly across all initial conditions x. In the special case when P has probabilistic upper

and lower bounds (e.g., when C is compact), uniform asymptotic tightness is automatically satis�ed.

As we will see below, uniform asymptotic tightness is not only part of a set of su¢ cient condi-

tions, but is also necessary for a Markov process to have a stable invariant distribution. Intuitively,

when a stable invariant distribution exists, the process will converge to that distribution for all

initial conditions, and hence for n large, a large part of its mass will be in the region where most

of the invariant distribution is concentrated.

De�nition 2 A Markov process with transition function P (x;A) satis�es weak mixing if there

exists c 2 C with the property that for all x 2 C there are S and �S positive integers (which may

depend on x) such that

PS(x; (c;1)) > 0 (2)

and

P
�S(x; (�1; c)) > 0: (3)

Mixing conditions are often used to establish the existence of a stable invariant distribution.

Intuitively, mixing rules out the possibility of two invariant distributions, one concentrated above c,
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the other concentrated below c. The logic is simple: if an invariant distribution is fully concentrated

below c, then for any x in the support of that distribution, condition (2) must fail.

The condition in De�nition 2 is related to several mixing conditions in the literature. Bhat-

tacharya and Lee (1988) impose a similar mixing assumption, but crucially, require mixing to be

uniform; that is, that there exists " > 0 such that PS(x; (c;1)) > " holds for all x.8 Thus they

require a universal S that works for all initial conditions x. In contrast, weak mixing only requires

that for each x there exists an S such that PS(x; (c;1)) > 0, i.e., the number of steps required

can depend on the initial condition. This distinction is important: in the economic applications I

consider below, weak mixing can easily be veri�ed, but the Bhattacharya-Lee mixing condition in

general does not hold. An elegant mixing condition introduced by Kamihigashi Stachurski (2012b)

is an order-reversing condition, which requires that when the process is started from two di¤erent

initial values xL < xH , it will eventually reverse order with probability one. While my sense is that

for a class of processes their mixing condition generalizes weak mixing, mine seems easier to verify

in applications. Weak mixing also generalizes the strong mixing condition imposed by Hopenhayn

and Prescott (1992), who, just like Bhattacharya and Lee, assume that S = S. Because Hopenhayn

and Prescott work with compact sets C that contain a lower bound a and an upper bound b, they

only need to impose mixing for x = a and x = b; this implies mixing for all other x 2 C because

the process is increasing. In our case, C need not be compact, and hence we require mixing for all

x 2 C.

As Dubins and Freedman (1966) noted, when C is an interval of R, mixing is not only su¢ cient

but also a necessary condition for the existence of a stable invariant distribution, except in the case

when that distribution is concentrated on a single value. In higher dimensions there are examples

where a stable invariant distribution exists but mixing is violated. However, as I show below, in

�most cases�weak mixing is implied by a stable invariant distribution. The following result then

provides both su¢ cient and �almost necessary�conditions for the existence of stable and invariant

distributions for increasing Markov processes.

Theorem 1 The following are true.

1. If an increasing Markov process satis�es weak mixing and uniform asymptotic tightness, then

it has a stable distribution.

2. If, in addition, the process is either Feller or has probabilistic upper and lower bounds, then

the stable distribution is invariant.
8They also impose a second uniform mixing condition corresponding to (3).
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3. If a Markov process has a stable distribution which is non-singular with respect to the Lebesgue

measure, then it satis�es weak mixing and uniform asymptotic tightness.

The theorem extents Hopenhayn and Prescott�s (1992) result about stable distributions for

potentially non-compact state spaces. When C is a compact interval set, uniform asymptotic

tightness is automatically satis�ed, and Hopenhayn and Prescott�s su¢ cient conditions obtain as a

special case.

The di¢ cult part of the result is part 1: that the conditions are su¢ cient for a stable distribution.

The proof is technical and given in the appendix. To illustrate the logic, it is helpful to brie�y

review the argument of Hopenhayn and Prescott for the compact case. Let k < c < k, and assume

momentarily that k is a lower bound and k is an upper bound of the set C. By monotonicity, the

process started from k will dominate the process started from k. However, mixing implies that

eventually, " of the probability mass of the process started from k will be above c, while " of the

mass when started from k will be below c. This implies that " of the masses of the two processes

reverse order. In addition, by compactness, the remainder 1�" of the mass of both processes remain

the
�
k; k

�
interval. But then we can repeat the above logic to show that " of these remainder masses

will also reverse order as n becomes large. Repeating this �mixing logic�many times implies that

eventually, the distributions Pn (k; :) and Pn
�
k; :
�
completely reverse order, which is only possible

if they converge to the same limit.

A key step above is that the remainder 1� " of the mass of Pn (k; :) remains above k, so that

the mixing logic can be repeated. This step is automatic if C is compact and k is its lower bound,

but fails when C is not compact. In this case, while " of the mass eventually migrates above c,

part or all of the remainder 1� " may go below k, where the probability that it comes back above

c can be much smaller.9 This is a problem, because now we may only be able to repeat the mixing

argument with a smaller ", and in�nite repetition with a sequence of decreasing " values need not

guarantee that the masses completely reverse order.

I deal with this problem by developing a bound on the measure that Pn (k; :) assigns to the

complement of [k;1). The assumption of uniform asymptotic tightness is important for this,

because it restricts the tail probabilities of Pn (k; :) for n large. The formal statement of this

bound, expressed in terms of expected values of functions of the Markov process, is contained in

9Except if mixing is uniform, as in Bhattacharya and Lee (1988). Then, even if the process has fallen below k, the
probability that it comes back above c is at least " independently of its current value. This illustrates the strength
of their uniform mixing condition.
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Lemma 1 in the Appendix. This bound in itself is not su¢ cient to conclude the proof, because

repeating the mixing logic many times cumulates the error term in the bound. To avoid this

di¢ culty, I choose the points k and k together with the number of repetitions to ensure that the

cumulative error term does not blow up, and take the limits n ! 1, k ! �1 and k ! 1 in a

carefully chosen order. This way I obtain limit results which are expressed in terms of the expected

values of families of functions. To conclude the proof, I convert these results to statements about

limits of probability measures.

1.3 Verifying Uniform Asymptotic Tightness

Theorem 1 is useful only to the extent that its su¢ cient conditions can be veri�ed in applications.

Two of the theorem�s conditions, mixing and monotonicity, are well-studied and can be veri�ed

using standard tools, as in Hopenhayn and Prescott (1992). I now present results that can be used

to verify the third condition, uniform asymptotic tightness.

Asymptotic tightness can be loosely interpreted as a requirement that the process does not

escape to in�nity. One way to ensure this is to assume that the mean of the process does not

escape to in�nity. This motivates the following de�nition.

De�nition 3 A process P (x;A) has asymptotically bounded mean if there exists K > 0 such that

for all x 2 C, limn!1 supEjT �n�xj < K.

Because �x assigns unit mass to x, EjT �n�xj is the expected absolute value of the process after n

periods, if started from x. Asymptotically bounded mean thus requires that the expected absolute

value of the process eventually becomes bounded, irrespective of the initial value.

Proposition 1 Assume that C is closed. If P (x;A) has asymptotically bounded mean, then it

satis�es uniform asymptotic tightness.

This result follows because the expected value of a random variable provides a bound on its tail

probabilities by Markov�s inequality. By assumption, the expected value of the process is bounded

uniformly for all initial values x as n becomes large. As a result, the bound on tail probabilities

depends only on the common bound for the expected values K given in De�nition 3, and not on

the initial conditions. This is exactly the condition for uniform asymptotic tightness.10

10The assumption that C is closed is important for the result. To see why, let C = fx 2 Rj x > 0g. Then
xt+1 = min

�
x2t ; 1

�
clearly has asymptotically bounded mean, but it does not satisfy asymptotic tightness, as all the

mass escapes towards zero for this process.
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Example. For concreteness, consider the following process:

xt+1 = At+1xt + bt+1 (4)

where At+1 � 0 and bt+1 � 0 are independent i.i.d. random variables, Eb < 1, and let C =

fx 2 Rj x � 0g. As we will see in Section 2, both economic applications in the paper lead to

dynamics similar to (4).

For the process (4), we can bound Ext+1 when EA < 1 by noting that repeated substitution

implies Ejxt+1j < (EA)t+1 x0+Eb= (1� EA). In particular, as t!1, the expected value is bounded

by a constant K = 2Eb= (1� EA) independently of the initial value x0. Thus, when EA < 1 this

process satis�es asymptotically bounded mean and thus also uniform asymptotic tightness.

As the example shows, asymptotically bounded mean is easy to verify in practice. However,

it can be a strong requirement: in both economic applications considered below, for a set of

parameters, asymptotic tightness obtains even though the mean of the processes is unbounded. To

understand how this can happen, consider (4) for large values of xt. For large xt, the value of xt+1

is essentially determined by At+1xt. Taking logs, we have approximately

log xt+1 � logAt+1 + log xt (5)

a random walk with innovation logAt+1. This equation suggests that the process does not escape to

in�nity as long as the random walk (5) has negative drift, i.e., the innovation satis�es ElogA < 0,

a weaker condition than EA < 1. Similarly, when ElogA > 0 the drift is positive, and hence the

process is likely to escape to in�nity and fail asymptotic tightness.

I now develop a formal version of this argument that can be used in applications. The idea

is to make use of an upper bound process yt+1 which is always greater than or equal to log xt+1,

and for which uniform asymptotic tightness is easy to verify. Set yt+1 to follow a random walk

with innovation logAt+1 when su¢ ciently far away from zero, and prevent it from getting close

to zero using a lower bound which may be stochastic. The process yt+1 de�ned this way, which

I call a random walk with a stochastic re�ecting barrier, serves as an upper bound for log xt+1

as long as the barrier is high enough relative to bt+1. The Proposition below shows that yt+1 is

asymptotically tight when ElogAt+1 < 0; hence so is log xt+1. A similar construction of a random

walk with absorbing barrier for a lower bound can be used to show that when ElogAt+1 > 0, the

process log xt+1 does escape to in�nity.
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The following proposition states the technical results for random walks with barriers required

for the above argument.

Proposition 2 Let (ut; vt) be a sequence of i.i.d. random pairs, with Ej�tj <1 and Ejutj <1.

(i) [Re�ecting barrier] If Eut+1 < 0, the stochastic process

yt+1 = ut+1 +max [yt; �t+1]

is monotone, Feller, and satis�es uniform asymptotic tightness

(ii) [Absorbing barrier] If Eut > 0, for any � real the stochastic process

yt+1 =

8<: yt + ut+1 if yt > �

�t+1 if yt � �

does not satisfy uniform asymptotic tightness.

The process in (i) can be thought of as a random walk with a re�ecting stochastic barrier.

When yt is large, yt+1 is most likely determined as yt+1 = ut+1+ yt, as in a random walk. When yt

is small, it may fall below the stochastic barrier �t+1, in which case yt+1 = ut+1 + �t+1 is re�ected

from the barrier �t+1. Monotonicity, continuity and mixing of this process follow from standard

arguments. When the innovation Eu < 0, this process also satis�es asymptotic tightness. The

intuition is simple: a high realization of yt+1 requires a sequence of high realizations of ut+1, but

this is unlikely if Eut+1 < 0 because of the law of large numbers. This con�rms the logic of the

argument stated before the proposition.

The process in (ii) is a random walk with a stochastic absorbing barrier. Here, the absorbing

barrier if it is ever hit, keeps the value of the process down. But if the barrier is avoided, then

Eut+1 > 0 implies that the process follows a random walk with positive drift and hence escapes to

in�nity.

2 Applications

2.1 Bu¤er Stock saving

Setup. I consider a setup similar to Carroll (1997, 2004) and Haliassos and Michaelides (2003).

An in�nitely lived agent has stochastic labor income and can invest in a menu of two �nancial
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securities: a risky stock and a safe bond. The agent faces borrowing and short sales constraints,

so that the portfolio shares of his wealth are restricted to be between zero and one for both assets.

The agent solves

max
C
E0

1X
t=0

�tu(Ct)

subject to the period budget constraint

Ct +Bt + St = Xt

where Bt and St are the dollar amounts invested in bonds and stocks, and Xt is cash on hand

available in period t. The evolution of Xt is given by

Xt+1 = StRt+1 +BtRf + Yt+1

where Rt+1 is the risky rate of return on stocks, Rf is the riskfree rate earned by bonds and Yt+1

is stochastic labor income. I assume that

St � 0

Bt � 0

so that the consumer is not able to borrow or short sell the stock.11 Period utility has constant

relative risk aversion � > 1:

u(Ct) =
C1��t

1� �:

Following Carroll (1992), I model labor income Yt+1 as

Yt+1 = Pt+1 � �t+1

Pt+1 = Pt �GNt+1:

Here Pt is the permanent component and �t is the transitory component of labor income. Pt follows

an exponential random walk with mean growth rate G and permanent shocks Nt with ENt = 1.

I assume that Nt and �t+1 are non-negative, independent and i.i.d., that E�t+1 < 1 and that

�t+1 > 0 with positive probability. I also assume that the gross stock return Rt+1 is non-negative,

11 If the lower bound of labor income is zero, the non-negativity of total savings will arise endogenously (see Carroll,
1997).
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i.i.d., independent of labor income, ERt+1 � Rf is �nite, and that the excess return Rt+1 � Rf
takes on both non-negative and non-positive values with positive probability. The special case with

no risky asset, which is the speci�cation considered by Carroll (1997, 2004), can be obtained by

assuming that Rt+1 = Rf . I also assume that there is some uncertainty in the economy, so that

Nt+1, �t+1 and Rt+1 are not all degenerate random variables. The above assumptions are generally

satis�ed in consumption and portfolio choice models, where Rt+1 and Nt+1 are often taken to be

lognormally distributed and �t+1 is assumed to be bounded.12 The non-negativity of Rt+1 captures

the limited liability of stocks.

As Deaton (1991), Carroll (2004) and Haliassos and Michaelides (2003) show, the following �im-

patience�conditions are useful for ensuring the existence of a solution to the consumer�s problem:

�Rf Et[(GNt+1)
��] < 1 (6)

and

� Et[Rt+1(GNt+1)��] < 1: (7)

These impatience conditions ensure that a Bellman operator associated with the consumer�s prob-

lem is a contraction mapping, leading to a well-de�ned value function and consumption function.13

Due to the homogeneity of the utility function, the consumer�s problem can be rewritten in

ratio form, where all variables are normalized by the level of permanent income Pt. Denoting the

normalized variables by lowercase letters (xt = Xt=Pt, ct = Ct=Pt, etc.) the dynamic of cash on

hand becomes

xt+1 = (Rp;t+1=GNt+1)(xt � ct) + �t+1 (8)

where Rp;t+1 denotes the return on the household�s portfolio between t and t+1 and xt�ct = st+bt
by de�nition.

Results. The theoretical results of Section 1 allow for an essentially complete characterization

of the parameters for which a stable invariant distribution exists. As is shown below, an invariant

distribution exists when consumption growth in an auxiliary model with no labor income is less

12See for example Carroll (1997, 2004), Haliassos and Michaelides (2003), Deaton (1991) and Campbell and Viceira
(2002).
13Carroll (2004) shows that an additional restriction, the �nonpathological patience condition� (Rf�)

1=� < Rf is
also needed to guarantee that a solution exists. This condition automatically holds in the current setup because
� > 1.
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than permanent income growth in the bu¤er stock model.

For the formal analysis, consider the version of the bu¤er stock model with no labor income

(G = 0). This is our auxiliary model, and it is equivalent to the discrete time Merton consumption

problem with the additional restriction that the consumer is not allowed to short stocks.14 As is

well known, in the solution of this maximization problem, consumption is proportional to current

resources and the portfolio share of stocks is constant. Let b� denote the optimal share of con-

sumption out of current wealth Xt, so that Ct = b�Xt, let �� be the optimal stock share in the

consumer�s portfolio, and write R�p;t+1 = �
�Rt+1 + (1� ��)Rf . Note that while the consumption

and portfolio are chosen dynamically, in the optimal policy, b� and �� are constant, and hence no

time subscript is necessary. While in general there are no closed form expressions for b� and �� in

the discrete time Merton consumption problem, accurate log-linear approximations are available,

and hence these parameters may be treated as essentially known.15

The following is the main result of this section.

Proposition 3 The processes xt, ct, st and bt have stable invariant distributions if

E log
�
R�p;t+1 (1� b�)

�
< E log [GNt+1] : (9)

Moreover, if

E log
�
R�p;t+1 (1� b�)

�
> E log [GNt+1] (10)

then xt does not have an invariant distribution.

Except for the knife-edge case when (9) holds with equality, the proposition completely char-

acterizes the circumstances when the bu¤er stock model has a stable invariant distribution. It is

important to note that the statement of the Proposition is not �circular�: the conditions are in

terms of R�p and b
�, which are endogenous variables of the auxiliary model, but exogenous to the

original bu¤er stock model. To understand the intuition for the result, note that the left hand

side of (9) is the expected value of log consumption growth in the Merton economy with no labor

income, while the right hand side is the expected log growth rate of the permanent component of

14This restriction will be automatically satis�ed if Rt+1 is not bounded away from zero.
15 If Rt+1 is lognormally distributed, then up to a log-linear approximation log(1�b�) = log �

�
+

rf
�
�rf� �2

�2
��1
2�2

and

�� = �=��2 where rf = logRf , rt+1 = logRt+1, �2 =var[rt+1] and � =E[logRt+1]�rf+�2=2 which is approximately
equal to the equity premium ERt+1 �Rf . These formulas are valid as long as �� < 1, otherwise the continuous time
Merton model does not obtain as a limit of the discrete time version.
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income in the bu¤er stock model.16 When the former is smaller, the consumption to income ratio

is mean-reverting and hence a stable invariant distribution exits. Mean reversion obtains because

when the consumption to income ratio is high, consumption behavior is similar to the auxiliary

model with no labor income, and hence, by (9), consumption is expected to grow slower than

income.

The Proposition is useful because the auxiliary model is much easier to solve than the original

one. In the special case when there is no risky asset, consumption growth in the Merton model can

be computed analytically (see Carroll, 2004): �� = 0 and 1� b� = (Rf�)1=� =Rf . In this case, (9)

becomes

log
h
(Rf�)

1=�
i
< E log [GNt+1] ;

which follows from the impatience condition (6) by Jensen�s inequality since the exponential function

is convex. As a result, in Carroll�s speci�cation with no risky asset, an invariant distribution always

exists under the standard impatience assumption.

At this point, it is useful to note that the impatience condition (6) used in the literature is a

su¢ cient but not necessary condition for the model with no risky asset to have a solution. For

example, in the special case with no transitory shocks and constant permanent income (G = 1), the

model will have a solution even if �Rf > 1, which violates the standard impatience condition (6).17

In this case, consumption grows at a constant positive rate and hence does not have an invariant

distribution, which is consistent with the above result, since the key condition in the Proposition,

inequality (9), does not hold.18 Thus there do exist cases where the consumer�s problem has a

solution but there is no stable invariant distribution. However, the standard impatience condition

(6) used in the literature is strong enough that it ensures both a solution and a stable invariant

distribution.

In the case with a risky and a riskfree asset, it can be shown that the key condition (9) in

the Proposition is in general not implied by the standard impatience conditions (6) and (7). As a

result, there are parameters where the consumer�s problem has a solution, but consumption and

cash-on-hand do not have invariant distributions. This case parallels the example discussed in the

16The left hand side is log consumption growth because in the Merton economy, the consumption to wealth ratio is
constant and hence consumption growth equals wealth growth, which is R�p;t+1 (1� b) since a share (1� b) of current
wealth is saved and invested.
17As discussed in footnote 13, the assumption that � > 1 implies the nonpathological patience condition (Rf�)

1=� <
Rf of Carrol (2004), and hence a solution exists.
18Strictly speaking, this example does not satisfy all modelling assumptions, as there is no uncertainty. This

inconsistency can be resolved by introducing a small transitory shock to labor income.
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previous paragraph: in the long run, consumption is expected to grow at a faster rate than income,

and hence their ratio is not mean-reverting. When there is both a risky and a safe asset, this can

occur even if model parameters are such that the su¢ cient conditions (6) and (7) are satis�ed and

thus the consumer�s problem does have a solution.

The result of the Proposition has implications for the predictability of consumption growth.

When a stable invariant distribution exists, the consumption to permanent income ratio ct has

mean-reverting dynamics. As a result, high values of ct = Ct=Pt must eventually be followed by

either lower consumption growth or higher income growth to bring down ct to its long term sta-

tionary distribution. Since the growth of permanent income is by construction i.i.d. and hence

unpredictable, it must be that high values of Ct=Pt predict lower than average subsequent con-

sumption growth. In particular, positive temporary shocks which raise ct predict lower subsequent

consumption growth, i.e., the immediate consumption response to the shock is �too large.� For

these parameters, then, the model yields predictable consumption growth and excess sensitivity of

consumption to temporary shocks, key features of bu¤er stock behavior (Carroll, 1997) which are

inconsistent with the standard permanent income hypothesis. In contrast, when no stable invariant

distribution exists, the model eventually converges to the solution of the Merton consumption prob-

lem, and hence in the limit consumption is a random walk whose innovations are determined by

the innovation in stock returns. For these parameters, the standard permanent income hypothesis

obtains: in the long run consumption growth is unpredictable and does not display excess sensitiv-

ity to temporary shocks. These results show that the existence of a stable invariant distribution

has powerful implications for consumption behavior.

The proof of Proposition 3 proceeds by verifying the conditions of Theorem 1 for the process

xt+1. Monotonicity� though not trivial to verify due to the presence of a risky investment opportunity�

follows from standard arguments presented in the Appendix. Verifying mixing is straightforward.

The key di¢ culty is to show that xt+1 is asymptotically uniformly tight. To see the logic for

tightness, note that for x large, the consumer�s problem is close to an unconstrained Merton con-

sumption problem. As a result, optimal consumption and investment will be similar to the Merton

case, and cash on hand follows the approximate dynamic

ext+1 = R�p;t+1 (1� b�) =GNt+1 � ext
where I substituted the Merton consumption and investment policy in equation (8), and ignored the
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labor income term �t+1 because it is small relative to cash on hand. Let ut+1 = log
�
R�p;t+1 (1� b�) =GNt+1

�
and eyt+1 = log ext+1, then eyt+1 = ut+1 + eyt
approximates the dynamic of log cash on hand for x large. Making use of Proposition 2, we can

conclude that when Eut+1 < 0 the process satis�es asymptotic tightness, but when Eut+1 > 0 it

does not. Finally, invariance is established by showing that an uppoer bound process closely related

to eyt+1 statis�es the conditions of the Theorem and hence a probabilistic upper bound for xt+1

exists; while the distribution of �t+1 serves as a probabilistic lower bound.

2.2 Stochastic Growth

In this section I explore the one-sector stochastic growth model �rst developed by Brock and Mirman

(1972). The existence and stability of an invariant distribution has been the subject of a number

of papers. Building on an earlier literature which focuses on bounded shocks, Stachurski (2002),

Kamihigashi (2007) and Zhang (2007) derive the existence and stability of an invariant distribution

with unbounded shock and capital stock. These papers work either under the assumption that either

the technology shocks enter the production function multiplicatively or that the shock distribution

is absolutely continuous.

Using the tools developed in Section 1, I explore conditions under which a stable distribution

exists even for unbounded shocks and capital stock, and an arbitrary production function. I show

that when the production function is log-supermodular, existence of a stable distribution follows

from Theorem 1 under weak conditions. The restriction to log-supermodularity implies that tech-

nology and capital are weakly complementary, which is satis�ed for example by all CES functions

with elasticity of substitution less than or equal to one, including the multiplicative formulation.

Setup. The consumer solves

maxE0

1X
t=0

�tu(ct)

subject to the feasibility constraint ct � xt, where xt denotes resources available in period t. The

utility function u is increasing and concave, with limc!0 u0 (c) =1. The accumulation of resources

is governed by

xt+1 = f (xt � ct; at+1)

where f is a production function and at+1 is an i.i.d. non-degenerate random disturbance term.
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I assume that f (k; a) is increasing in both arguments, continuously di¤erentiable and concave in

k for all a, and satis�es the Inada conditions: limk!0 f 0 (k; a) = 1 and limk!1 f 0 (k; a) = 0 for

all a > 0. In addition, let f (0; a) = 0 for all a and f (k; 0) = 0 for all k. The special case when

f (k; a) = af(k) is analyzed by Stokey, Lucas and Prescott (1989), Hopenhayn and Prescott (1992)

and Stachurski (2002), among others.

Results. I now establish conditions under which a stable invariant distribution exists when the

production function is log-supermodular.19

Proposition 4 If Ejlog f (k; a)j exists for all k and f (k; a) is log-supermodular, then the Brock-

Mirman model has a stable invariant distribution.

When f (k; a) = af(k), log-supermodularity is immediate, and thus a stable invariant distribu-

tion exists as long as jlog aj has �nite mean. This is weaker than Stachurski�s (2002) and Zhang�s

(2007) condition that 1=a has a �nite expect value, and does not require, unlike Kamihigashi (2007),

that the distribution of a be absolutely continuous.

The proof of Proposition 4 proceeds by verifying the conditions of Theorem 1 for the process

xt+1. Mixing and monotonicity follow from standard arguments. To establish asymptotic tightness,

consider log xt+1. In the bu¤er-stock application we had xt+1 � �t+1, which implied that xt+1 could

never get stuck at zero. In the current application, if xt+1 ever hits zero, it will continue to remain

there, because f (0; a) = 0. As a result, we need to establish asymptotic tightness �from below�as

well as from above for log xt+1.

For simplicity, I illustrate the argument of the proof using the special case where f (k; a) = af(k).

Since f (x) =x ! 0 as x ! 1 by the Inada conditions, there exists x such that for x > x we have

log f (x) < log x�Elog a � 1. Let ut+1 = log at+1�Elog a � 1, then we have Eut+1 < 0, and for

xt > x

log xt+1 � ut+1 + log xt:

Thus for x large, the process of log xt+1 is dominated by a random walk with negative drift. For

x small, the process can be bounded by a constant related to log f (x), and then Proposition 2 (i)

shows that the process x is asymptotically tight �from above.�

To obtain a lower bound, I build on a lemma presented in the Appendix, which extends Lemma

7.2 in Stachurski (2002). The lemma shows that for any a� in the support of a, when x is small

19Recall that a function f (k; a) is log-supermodular if for all k0 � k and a0 � a we have log f (k0; a0)� log f (k; a0) �
log f (k0; a)� log f (k; a).
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enough, a�f (x� c(x)) � x holds. This result can be used to show that for xt+1 small, the dynamic

of log xt+1 is bounded from below by a random walk with positive drift. For x large, log x can

be bounded by a constant, and another application of Proposition 2 (i) shows that xt+1 satis�es

asymptotic tightness �from below.�

Finally, to prove that the stable distribution is invariant I show that both the upper and

lower bound processes satisfy the Theorem and hence have invariant distributions which serve as

probabilistic upper and lower bounds for xt+1.

3 Conclusion

This paper developed simple su¢ cient and almost necessary conditions for the existence of a stable

invariant distribution of an increasing Markov process de�ned on a potentially non-compact state

space. The conditions were used to establish the existence of stable invariant distributions in models

of bu¤er-stock saving and stochastic growth. I hope that these su¢ cient conditions will be useful

in other applications as well.

Appendix: Proofs

Preliminaries. I begin with some de�nitions. For any probability measure � and bounded, mea-
surable function f , de�ne the inner product

hf; �i =
Z
RN
f(x)d�(x):

For a real-valued, bounded, measurable functions f de�ned on C, let

Tf(z) =

Z
RN
f(x)P (z; dx)

the conditional expectation of f evaluated at the next realization of the process given that the
current state is z. One can think of T as an operator de�ned on a function space; with this
interpretation, T � is the adjoint of T in the sense that hf; T ��i = hTf; �i for all f and � (see
Stokey, Lucas and Prescott, 1989, p. 218, Corollary).

Consider a process that satis�es uniform asymptotic tightness. For each C� there exist k� and
k� such that C� �

�
k�; k�

�
and c 2

�
k�; k�

�
. Moreover, since C is an interval set, k� and k� can

be chosen from C, which ensures that
�
k�; k�

�
� C also holds. Then, for any x 2 C there exists n

large enough that Pr
�
jT �n�xj 2

�
k�; k�

��
> 1� � by de�nition.
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Lemma 1 If an increasing Markov process satis�es weak mixing and uniform asymptotic tightness,
then there exists " > 0 with the property that for all � > 0 there is M > 0 such that for any f
non-decreasing, bounded function and m �M

Tmf(�k�) � "f(c) + (1� ")f(�k�) + 2� kfk

and
Tmf(k�) � "f(c) + (1� ")f(k�)� 2� kfk :

Proof. By (3), there exists "1 > 0 such that P �S
�
k1=2; (�1; c)

�
> 2"1. Since T � is an

increasing operator, it follows that for all z � k1=2 we have P
�S (z; (�1; c)) > 2"1. Now consider

the n-step transition probability distribution starting from some x 2 C.

Pn(x; :) = T �n�x = T
� �S T �(n�

�S) �x:

For all n large enough, T �(n� �S) �x assigns at least probability 1=2 to
h
k1=2; k1=2

i
. Moreover, for

all z 2
h
k1=2; k1=2

i
, T � �S assigns at least probability 2"1 to (�1; c). Combining these observations

shows that for any x 2 C, limn!1 inf Pn(x; (�1; c]) > "1. A similar argument shows the existence
of "2 > 0 such that for all x 2 C, limn!1 inf Pn(x; [c;1)) > "2. Let " = min ["1; "2].

Fix any � > 0. The above argument shows that for all m large enough

Pm(�k�; (�1; c]) > " (11)

and analogously
Pm(k�; [c;1)) > ": (12)

Moreover, for all m large
Pm(�k�; (�1; �k�]) > 1� � (13)

and
Pm(k�; [k�;1)) > 1� � (14)

by de�nition. Set M such that (11) through (14) are satis�ed for all m � M , and let f be a
non-decreasing bounded function. Then

Tmf(�k�) =

=

Z
(�1;c]

f(z)Pm(�k�; dz) +

Z
(�1;�k� ]n(�1;c]

f(z)Pm(�k�; dz) +

Z
RNn(�1;�k� ]

f(z)Pm(�k�; dz)

� Pm(�k�; (�1; c])f(c) + Pm(�k�; (�1; �k�]n(�1; c])f(�k�) + Pm(�k�;RNn(�1; �k�]) kfk �

� "f(c) + (1� ")f(�k�) + 2� kfk

using (11) and (13). This proves the �rst half of the lemma. The second half can be established by
a similar argument using (12) and (14). QED

Proof of Theorem 1. Begin with part 1. Let x1, x2 2 C. I will show that if j1; j2 ! 1,
perhaps along subsequences, then T �j1�x1 and T

�j2�x2 converge to the same limit distribution. Fix
any � > 0, this de�nes k� and k� as above. For ease of notation, I will no longer indicate the
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dependence of k and k on �. There exists n0 (which depends on �) such that for all n � n0 we have
Pn(x1;

�
k; �k

�
) > 1� � and Pn(x2;

�
k; �k

�
) > 1� �. Let g be a non-decreasing, continuous, bounded

function and n � n0, then for all j1 > n

T j1g; �x1

�
=

Z
T j1g(z) P (x1;dz) =

Z
T j1�ng(z) Pn (x1;dz) =

=

Z
(�1;�k]

T j1�ng(z) Pn (x1;dz) +
Z
RNn(�1;�k]

T j1�ng(z) Pn (x1;dz) �

� (1� �)T j1�ng(�k) + � � kgk �
� T j1�ng(�k) + 2� kgk :

A similar argument shows that


T j1g; �x1

�
> T j1�ng(k) � 2� kgk and similar inequalities hold for

x2 as well. Combining these shows that for all j � min [j1; j2]� n0

T jg(k)� 2� kgk �


T j1g; �x1

�
� T jg(�k) + 2� kgk (15)

and
T jg(k)� 2� kgk �



T j2g; �x2

�
� T jg(�k) + 2� kgk : (16)

Write min [j1; j2]� n0 = mM + n1 where 0 � n1 < M and M is as de�ned in Lemma 1. Then (15)
and (16) imply ��
T j1g; �x1�� 
T j2g; �x2��� � TMmg(�k)� TMmg(k) + 4� kgk : (17)

Now note that f = TM(m�1)g is a bounded, non-decreasing function, and thus satis�es the condi-
tions of Lemma 1. Since kfk � kgk, the Lemma, combined with (17), yields��
T j1g; �x1�� 
T j2g; �x2��� � (1� ") hTM(m�1)g(�k)� TM(m�1)g(k)

i
+ 8� kgk : (18)

We can iterate the right hand side in (18) by applying Lemma 1 repeatedly, �rst for f = TM(m�2)g,
then f = TM(m�3)g, and so on. This yields��
T j1g; �x1�� 
T j2g; �x2��� � (1�")m �g(�k)� g(k)�+4� kgk+4� kgkn1 + (1� ") + :::+ (1� ")m�1o
and summing the terms on the right hand side implies

��
T j1g; �x1�� 
T j2g; �x2��� � kgk�2(1� ")m + 4� + 4�"
�
: (19)

Now consider any subsequences of j1 and j2. For any �, as j1 and j2 grow without bound along
their subsequences, m will also grow without bound, because m � (min [j1; j2]� n0) =M � 1. As
a result, the right hand side in (19) can be made smaller than 4 kgk � (1 + 1=") for any �. Since
" is �xed, as � ! 0 this number will be arbitrarily small. As a result, any subsequence of j1
and j2 has a subsequence along which

��
T j1g; �x1�� 
T j2g; �x2��� converges to zero. But then
limj1;j2!1

��
T j1g; �x1�� 
T j2g; �x2��� = 0 must also hold.
To proceed, note that the sequence of measures T �j1�x1 is tight by assumption. Therefore, by

Prokhorov�s theorem, there exists a convergent subsequence and a limit distribution �. Suppose
now that the entire sequence T �j1�x1 does not converge to �; then there exists a second subsequence
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with a di¤erent limit �0. But the above argument with x1 = x2 then implies thatZ
RN
g(x)d�(x) =

Z
RN
g(x)d�0(x) (20)

for all g monotone, bounded and continuous functions. It is a well-known fact that if (20) holds
for all continuous and bounded functions, then � = �0. Here I argue that even if (20) holds only
for monotone bounded and continuous functions, � = �0 still follows. To see the logic, note that
for each set of the form [x;1), one can construct a decreasing sequence of monotone functions
gl such that 0 � gl � 1, gl(y) = 1 if y 2 [x;1) and gl(y) = 0 if y =2 [x � 1=l;1). Then
liml!1

R
gld� = � ([x;1)) and similarly for �0, which implies that � ([x;1)) = �0 ([x;1)). But

then � ([x; y)) = �0 ([x; y)) must hold for all x and y, because all sets of the form [x; y) can be
obtained from sets of the form [x;1) using the operations of disjoint union and set subtraction.
Since half-open interval sets generate the entire Borel sigma-algebra, it follows that � = �0.

It follows that any subsequence of T �j1�x1 converges to �, i.e., that the entire sequence converges.
Thus T �j1�x1 is convergent for all x1; the above argument for x1 6= x2 now implies that all these
sequences converge to the same limit distribution �.

The above result implies that the process converges to the same limit distribution � when
started from any initial state x. For a non-degenerate initial distribution � with compact support,
we can �nd x1 and x2 such that �x1 � � � �x2 . Since the process started from x1 and x2 converges
to the same limit �, so does the process started from �. Finally, for an arbitrary initial distribution
�, let f be a bounded and continuous function, " > 0, and set x1 < x2 such that � ([x1; x2]) > 1�".
Write � = ��a + (1� �)�b where �a ([x1; x2]) = 1, �b ([x1; x2]) = 0, and, by design, � > 1 � ".
Now, for n large

jhf; T �n�i � hf; �ij =
����Z
C
Tnf(x)d�(x)�

Z
C
f(x)d�(x)

����
� �

����Z
C
Tnf(x)d�a(x)�

Z
C
f(x)d�(x)

����+ (1� �) ����Z
C
Tnf(x)d�b(x)�

Z
C
f(x)d�(x)

����
� �"+ 2 (1� �) jf j

where we used that T �n�a converges to �. The last term can be made arbitrarily small by setting
" small, showing that T �n� converges to �.

Continue with part 2. Suppose P is Feller, and let � be the stable distribution. Stability of
� implies that for any g bounded and continuous, jhf; T �n�i � hf; �ij converges to zero in n. The
Feller property implies that for any f bounded and continuous, Tf is also continuous. Let g = Tf ,
then

��
f; T �n+1��� hf; T ��i�� also converges to zero, implying that � = limT �n� = T ��.
Now suppose P has probabilistic upper and lower bounds. Then the Knaster-Tarski �xed-point

theorem implies, the same way as in Hopenhayn and Prescott (1992), that an invariant distribution
� exists. Stability implies that T �n� = � converges to �, hence � = � is both stable and invariant.

Finally, part 3. I begin by showing that uniform asymptotic tightness is necessary for the
existence of a stable distribution. Let � be the stable distribution, let U� be a bounded open set with
� (U�) > 1� �, and let C� be the closure of U� in the Euclidean topology. Since U� is bounded, C�
is compact. Moreover, since Pn (x; :) =) �, we have limn!1 inf Pn (x;U�) � � (U�) > 1� � where
the �rst inequality follows because U� is open. But this implies that limn!1 inf Pn (x;C�) > 1� �
which is the de�nition of uniform asymptotic tightness.
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Next I show that if � is non-singular and stable, then weak mixing holds. Below I argue that
if � is non-singular then there exists c such that � (fx < cg) > 0 and � (fx > cg) > 0. If such a
c exists, then the fact the process converges to � from any initial condition immediately implies
weak mixing with respect to c.

To see why a c with the above property exists, write � = �1 + �2 where �1 is absolutely
continuous with respect to the Lebesgue measure, and �1 (C) > 0 by assumption. The claim is
immediate for N = 1. Suppose that N = 2 and consider a unit square [x; x+ 1] in the plane such
that �1 ([x; x+ 1]) > 0. If �1 ([x; x+ 1=2]) > 0 and �1 ([x+ 1=2; x+ 1]) > 0 both hold, then we
are done, as x+ 1=2 can serve as c. (Note, the boundaries of these interval sets can be ignored as
�1 is absolutely continuous). Otherwise, the Lebesgue measure of the support of �1 in [x; x+ 1]
must be at most 3=4, since either �1 ([x; x+ 1=2]) = 0 or �1 ([x+ 1=2; x+ 1]) = 0 must hold. Now
repeat the above argument for the three remaining smaller squares in [x; x+ 1]. For each of these
three squares, either their midpoint serves as a valid c, or �1 must be concentrated on a subset
with Lebesgue measure at most 3=4 of their size. As a result, if none of the midpoints serves as a
valid c, it must be that �1 is concentrated on a set of measure (3=4)

2. Repeating the argument by
splitting the squares into four squares inde�nitely shows that if a c with the desired property does
not exist, then �1 must be concentrated on a set of zero Lebesgue measure, since (3=4)

j ! 0 as
j !1. This contradicts the assumption that �1 is absolutely continuous and has positive measure
on [x; x+ 1]. For higher dimensions N , a similar argument works replacing 3=4 by

�
2N � 1

�
=2N .

Proof of Proposition 1. Let K� =
�
x 2 RN j jxj � 2K=�

	
, then Pn (x;K�) > 1 � � for n large

by the Markov inequality. Let C� = C \K�. Since C is closed and K� is compact, C� is compact
and Pn (x;C�) > 1� �, as desired.

Proof of Proposition 2. (i) Monotonicity is immediate. The Feller property follows because
addition and the max operator are continuous. To show tightness, begin by exploring the properties
of a di¤erent process. Let (w1; 
1), (w2; 
2),... be independent random variables, all distributed
according to the distribution of (u1; �1). Consider

Sn =
nX
i=1

wi + 
n:

By the strong law of large numbers, Sn=n !Ew1 with probability one. The logic of the proof is
to bound the tail probability of Sn, and use this bound to establish asymptotic tightness for the
process yt+1. Fix some u > 0, and consider

Pr [9n: Sn > u] � Pr [9n < k: Sn > u] + Pr [9n � k: Sn > u] : (21)

We can rewrite the second term as

Pr [9n � k: Sn > u] = Pr
�
9n � k: Sn � nEw1

n
>
u� nEw1

n

�
�

� Pr
�
9n � k: Sn � nEw1

n
> �Ew1

�
:

Recall that Ew1 < 0. Since (Sn � nEw1) =n ! 0 with probability one, the term on the right
hand side goes to zero as k ! 1, independently of u. In addition, for any �xed k, the term
Pr [9n < k: Sn > u] can be made arbitrarily small for u large enough. Combining these observations
with (21) implies that Pr [9n: Sn > u]! 0 as u!1.
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Now consider the process yt+1 of the Proposition. Our goal is to estimate Pr [yt+1 > u]. First
note that

Pr [yt+1 > u] � Pr [8s � t : ys > us + �s] + Pr

249s � t+ 1 : ys = us + �s and �s + t+1X
j=s

uj > u

35 :
(22)

I begin by bounding the second term in this expression. Let wi = ut+2�i and let 
i = �t+2�i for
i = 1, 2,...,t + 1, and de�ne (wi; 
i) to be i.i.d. with distribution (u1; �1) for i > t + 1. Then
(wn; 
n) for n = 1, 2,.3,... are independent random variables, all distributed according to the
distribution of (u1; �1). Since these variables satisfy the assumptions made above for (wn; 
n),
it follows that Pr [9n: Sn > u] ! 0 as u ! 1 also holds. But as long as n � t + 1, we have
Sn =

Pn
i=1wi + 
n = �s +

Pt+1
j=s uj where s = t+ 2� n. Therefore we can bound the second term

in (22) using Sn as

Pr

249s � t+ 1 : ys = us + �s and �s + t+1X
j=s

uj > u

35 � Pr [9n: Sn > u] :
As we have seen, as u ! 1 the bound on the right goes to zero. For any � > 0, set u to be large
enough so that Pr [9n: Sn > u] < �=2. Next I turn to bound the �rst term in (22). This is easy,
because Pr [8s � t : ys > us + �s] ! 0 as t ! 1 for any y0. Thus, for any given y0, we can pick
t0 such that for all t � t0, we have Pr [8s � t : ys > us + �s] < �=2. Combining these inequalities
implies that when y is started from y0, Pr [yt+1 > u] < � for all t > t0. Letting C� = [0; u], this
means that limt!1 inf Pr [yt+1 2 C�] > 1 � � for any initial value y0, which establishes uniform
asymptotic tightness of yt+1.

(ii) A similar logic based on the strong law of large numbers can be used to show that as
y0 ! 1, Pr

�
8t : y0 +

Pt
s=0 us > �

�
! 1. Moreover, again using the strong law of large num-

bers, one can show that Pr
�
8t > t0 : y0 +

Pt
s=0 us > u

�
! 1 as t0 ! 1 for any given u. Now

suppose that y satis�es asymptotic tightness. Then for some � > 0 there must exist u such that
limt!1 inf Pr [yt < u] > 1� �. Note that

Pr [yt < u] � Pr
"
9t0 : y0 +

t0X
s=0

us � �
#
+ Pr

"
y0 +

tX
s=0

us � u
#
: (23)

Pick y0 so that Pr
�
8t : y0 +

Pt
s=0 us > �

�
> 1��=2 and t0 so that Pr

�
8t > t0 : y0 +

Pt
s=0 us > u

�
>

1 � �=2. Consider the process yt+1 started from y0: by the above inequalities, for all t > t0 the
right hand side of (23) is less than �, which contradicts limt!1 inf Pr [yt < u] > 1 � � if � < 1=2.
This shows that yt does not satisfy asymptotic tightness.

Proof of Proposition 3. Start with the case where equation (9) holds. We need to verify the
conditions of Theorem 1 for the process xt+1. Begin with uniform asymptotic tightness. The
approach I take is to show that asymptotic tightness for xt+1 follows from asymptotic tightness for
a related process where the condition can be veri�ed using Proposition 2.

Note that for given Pt, as Xt ! 1, the optimal consumption and investment policy of the
bu¤er stock model converges to that of the Merton consumption problem by the theorem of the
maximum, since labor income constitutes a smaller and smaller share of total wealth. As a result,
for every " > 0 there exists x such that for x > x we have jc(x)=x� b�j < " and j� (x)� ��j < ".
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Choose "; � > 0 small enough such that for

ut+1 = log [(�
� + ")Rt+1 + (1� �� + ")Rf ] + log [1� b� + "]� log [GNt+1] + log (1 + �)

we have Eut+1 < 0. Such " and � exist by (9) and by the monotone convergence theorem.
Let �t+1 = logmax [(1 + 1=�) �t; x]and consider the process yt de�ned as

yt+1 = ut+1 +max [yt; �t+1] :

Since E�t+1 < 1, it follows that E�t+1 < 1, and Eut+1 < 0 by assumption. Moreover, by
truncating the distribution of u at a low negative value if necessary, we can ensure that Ejuj <1
since ERt+1 <1 and Et[Rt+1(GNt+1)��] <1 by assumption. Proposition 2 (i) then implies that
yt+1 is monotone, Feller, and satis�es uniform asymptotic tightness. It is easy to see that it also
satis�es weak mixing. It follows that the same conditions also hold for exp yt+1, which therefore
has a unique stable invariant distribution.

Now consider the non-negative Markov process zt+1 = xt+1 � �t+1. The dynamics of exp yt+1
dominates that of zt+1 in the sense of �rst order stochastic dominance. To see why, note that for
any initial value z0 = x0 � �0, the following �rst-order stochastic dominance relation holds:

log z1 = log [(Rp=GNt+1)(x0 � c0)] � ut+1 � log (1 + �) + logmax [x0; x]

because xt+1 is an increasing process. Moreover, x0 = z0 + �0 � max [(1 + �) z0; (1 + 1=�) �0] and
hence logmax [x0; x] � log (1 + �) + max [log z0; �1]. This shows that the distribution of log z1 will
be dominated by the distribution of y1, and hence that the transition operator of exp y dominates
that of z. Since exp y satis�es asymptotic tightness and dominates z which is non-negative, it
follows that z also satis�es asymptotic tightness. Finally, xt+1 = zt+1 + �t+1 is the sum of two
non-negative asymptotically tight processes and hence asymptotically tight, as desired.

I now turn to establish monotonicity. Note that for x0t � xt, the optimal policies satisfy
s0t � st and b0t � bt because the continuation value function of the consumer exhibits decreasing
absolute risk aversion (Carroll and Kimball, 1996), a property which is preserved in the presence of
independent background risk (Gollier 2001, p. 116). As a result, by equation (8) the distribution
of x0t+1 dominates that of xt+1 which shows that x is increasing.

Next consider mixing. Let � denote the in�mum and � the supremum of the support of �, and
N the supremum of the support of Nt+1. If N = 1 then strong mixing follows immediately for
any c such that � � c � � because for any x0, with a high realization of Nt+1, the process can, in
just one step, reach a value arbitrarily close to �; and similarly, for any x0 in one step the process
can reach a value greater than � minus any small number.

If N <1, then consider the dynamic de�ned by

bxt+1 = (Rf=GN)(bxt � c(bxt)) + �. (24)

I now show that the slope of the right hand side in bx is below one and bounded away from one.
Kimball and Carroll (1996) show that the consumption function in this model is concave, so that
c0(bx) is decreasing. Moreover, bx � c(bx) � (1� b) � bx for all bx because the presence of future labor
income cannot reduce current consumption. This implies that 1 � c0(bx) � (1� b) � bx, because
1� c0(bx) is increasing. As a result, the slope of the right hand side of (24) as a function of bxt is less
than Rf (1� b) =GN which must be less than one by (9) This veri�es that the slope of the right
hand side is below 1.

It follows that a �xed point bx� of the dynamics (24) uniquely exits, and the dynamics of bx
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converges to bx� monotonically for any x0. Because Rt+1 � Rf with positive probability, for any
x0 the dynamic of x will have realizations arbitrarily close to, or below, the dynamic of bx. As a
result, for any x0, the process x ends up with positive probability below bx� + " for any " > 0.
Similarly, as Rt+1 � Rf with positive probability, the dynamics of x will have realizations abovebx with positive probability, and hence ends up with positive probability strictly above bx�, which
shows strong mixing.

We have veri�ed that xt+1 has a unique stable distribution. To also show that this distribution
is invariant, it su¢ ces to note that since �t+1 � xt+1 and xt+1��t+1 � exp yt+1, and because �t+1 is
independent of yt+1 and i.i.d. non-negative, the invariant distributions of �t+1 and of exp yt+1+�t+1
serve as probabilistic lower and upper bounds.

To show that ct, st and bt all have unique invariant distributions, note that all of these variables
are continuous functions of xt, and the continuous function of a weakly convergent random sequence
is itself weakly convergent.

Finally, I show that when (10) holds, x does not satisfy uniform asymptotic tightness. We
proceed using Lemma 2 (ii). Pick " small enough that

ut+1 = log [(�
� � ")Rt+1 + (1� �� � ")Rf ] + log [1� b� � "]� log [GNt+1]

satis�es Eut+1 > 0, let �t+1 = log �t+1 and � = log x, and de�ne

yt+1 =

�
yt + ut+1 if yt > �
�t+1 if yt � �:

I argue that the dynamics of zt+1 = log xt+1 dominates that of yt+1. This is because for z0 > � we
have

z1 = log [(Rp=GNt+1)(x0 � c0) + �t+1] � ut+1 + z0
and for z0 � � we have z1 � �1 = log �1 by de�nition. Since Eut+1 > 0, Lemma 2 (ii) implies that
yt+1 does not satisfy uniform asymptotic tightness; but then neither does zt+1 and hence neither
does xt+1.

Proof of Proposition 4. The proof that the process satis�es asymptotic tightness from below
requires the following lemma, which generalizes Lemma 7.2 in Stachurski (2002).

Lemma 2 For each a� that satis�es Pr (a � a�) > 0, there exists x such that for all x � x we have
f (x� c(x); a�) � x.

Proof. Let V (x) be the representative consumer�s value function. The Euler equation together
with the envelope condition implies that

V 0 (x) = �

1Z
0

V 0 (f (x� c(x); a)) � f 0 (x� c(x); a) dF (a)

� �
a�Z
0

V 0 (f (x� c(x); a�)) � f 0 (x� c(x); a) dF (a)

� V 0 (f (x� c(x); a�)) � �
a�Z
0

f 0 (x� c(x); a) dF (a) :
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Since f 0(y; a)!1 as y ! 0 monotonically and x� c(x) is monotone in x, the integral on the right
hand side can be made arbitrarily large for x small. As a result, there exists x such that for x � x

V 0 (x) > V 0 (f (x� c(x); a�))

which implies that f (x� c(x); a�) � x for all x � x. QED.

Now �x some x� > 0, and for a �xed a�, let ut+1 = infx<x� log [f (x; a)] � log [f (x; a�)]. By
log-supermodularity, it is easy to see that

ut+1 =

�
log [f (0; a) =f (0; a�)] if a > a�

log [f (x�; a) =f (x�; a�)] if a � a�

where I used the notation that limx!0 inf log [f (x; a) =f (x; a�)] = log [f (0; a) =f (0; a�)]. Note that
this term is by de�nition non-negative. By the assumption that log [f (x�; a)] is integrable, there
exists a� small enough such that Eut+1 > 0 and Pr (a � a�) > 0 still holds. Fix a� at such a value.

By Proposition 2, there exists x � x� such that for x < x we have

f (x� c(x); a�) � x:

We can write

log xt+1 = log f (xt � ct; at+1)� log f (xt � ct; a�) + log f (xt � ct; a�)� log xt + log xt:

Since ut+1 � log [f (x; a)]� log [f (x; a�)] when x < x�, we obtain for all x < x that

log xt+1 � ut+1 + log xt:

For x � x we have
log xt+1 � log f (x� c(x); at+1) :

Let �t+1 = log f (x� c(x); at+1)� ut+1, then

yt+1 = ut+1 +min [yt; �t+1]

is a process that is dominated by log xt+1. Applying Proposition 2 (i), noting that we need to
ensure yt+1 does not escape to minus in�nity, it follows that yt+1 satis�es asymptotic tightness,
which implies that xt+1 does not escape to minus in�nity either.

To show that xt satis�es asymptotic tightness from above, note that log f (x; a) � log x is
monotone decreasing in x for all a, and limx!1 [log f (x; a)� log x] = �1. Since log f (x; a)
is integrable, it follows from the dominated convergence theorem that there exists x such that
Elog f (x; a) < log x. Let ut+1 = log f (x; at+1)� log x.

Now consider
log xt+1 � log f (xt; at+1)� log xt + log xt:

For all x > x we have
log xt+1 � ut+1 + log xt

while for all x � x we have
log xt+1 � log f (x; at+1) :
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Let �t+1 = log f (x; at+1)� ut+1, then

yt+1 = ut+1 +max [log yt; �t+1]

clearly dominates the dynamics of log x, and satis�es asymptotic tightness by Proposition 2 (i). As
a result, so does xt+1.

The fact that x is increasing follows as in Hopenhayn and Prescott (1992). I now turn to
mixing. Let a denote the in�mum of the support of a, and begin by assuming that a = 0. The
above argument establishing tightness showed that for any initial condition x0, the process xt+1
will eventually assume a value bounded away from zero with positive probability. Since a = 0, we
also have that for any initial condition x0, the process x can assume a value arbitrarily close to
zero in one step, and these two observations imply mixing.

If a > 0 then mixing can be shown by slightly modifying Hopenhayn and Prescott�s argument.
Let k� be the unique solution to the equation 1 = �Ef 0 (k�; a), and let x� be the unique value such
that x� � c(x�) = k�. Let x0 be large enough that f

�
x0 � c(x0); a

�
< x0, and de�ne the sequence

xn+1 = f (xn � c(xn); a). This is a decreasing and bounded sequence which converges to some value
x. By continuity, f (x� c(x); a) = x. The �rst order condition together with an envelope theorem
implies

u0 (c(x)) = �E
�
f 0 (x� c(x); a) � u0 (c(f (x� c(x); a)))

�
:

We have f (x� c(x); a) � f (x� c(x); a) = x and hence

u0 (c(x)) < �E
�
f 0 (x� c(x); a) � u0 (c(x))

�
where the inequality is strict if a is non-degenerate. This implies 1=� <E[f 0 (x� c(x); a)] or x < x�.
Since a is the in�mum of the support of a, the probability that xt will be in any neighborhood of
x eventually is positive.

Now consider an arbitrary low value of x0, and de�ne the sequence xn+1 = f (xn � c(xn); a).
An analogous argument shows that for x0 low enough, we eventually get to a point x such that
x > x�. This shows that x is mixing with respect to x�.

It thus follows that x has a stable distribution. To show that this distribution is also invariant,
I note that with small modi�cations, the above arguments can also be used to show that the upper
and lower bound processes also satisfy weak mixing. Because they are Feller, they possess invariant
distributions, and hence so does x.
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