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Abstract

We show the existence of a pure strategy, symmetric, increasing equilibrium in double auction markets
with correlated, conditionally independent private values and many participants. The equilibrium we find
is arbitrarily close to fully revealing as the market size grows. Our results provide strategic foundations for
price-taking behavior in large markets.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper establishes the existence of pure-strategy equilibria for large double auctions with
correlated, conditionally independent private values. In these equilibria, bids are very close to
valuations, and so can be interpreted as approximately truthful reports of the agents’ information.
Thus the equilibrium we find approximates price-taking behavior in large markets.

The main difficulty in our proof is that without independence of values, standard arguments
showing the monotonicity of best response bidding functions break down. Even when all op-
ponents make use of increasing bidding functions, Reny and Perry [11] construct an example
for the interdependent values case where the best response of an agent is non-monotonic. 1 In-
tuitively, observing a higher value has two effects on the bidding behavior of a buyer. First, a higher
valuation makes submitting higher bids more attractive. Second, a higher valuation reveals
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information about opponent values and bids, and this information may lead to a lower best
response bid.

We proceed by establishing that this “information effect” is small in auctions with many par-
ticipants. We do this by first showing that, because each agent is rarely pivotal in large auctions,
best responses to strategies that are approximately truthful are themselves approximately truthful.
We then prove that the size of the information effect is proportional to the misrepresentation
of an agent’s bid, because the effect operates through changing the likelihood that the agent is
pivotal. Since in large auctions bids are approximately truthful, the information effect is small,
and monotonicity obtains.

A second difficulty is that when ties occur with positive probability, best responses need not
exist, because then a bidder would like to undercut the tie by an arbitrary positive amount. We
deal with this problem by introducing small stochastic perturbations to the original game which
make ties zero probability events, and thus smooth out the discontinuities in payoff functions.
In these perturbed games best response bidding functions exist, and as argued above, with many
participants they are also increasing. We then establish existence of equilibrium in the perturbed
game using a fixed-point theorem on the Banach space of increasing bidding functions. At this
step, we face the additional difficulty that the image of the best response map may not be contained
in its domain. We truncate best responses before applying the fixed point theorem to deal with this
problem. Then, extending an argument of Rustichini et al. [12], we bound the degree to which
agents misrepresent their valuations in the resulting profile. This bound shows that for large
auctions the truncation does not bind, hence our profile is an equilibrium of the perturbed game.
Because the bound is uniform in the size of the perturbation, sending the perturbations to zero
gives an equilibrium of the unperturbed double auction in which all players bid approximately
truthfully. The Rustichini et al. argument also provides a rate of convergence to efficiency of the
equilibrium. 2

As compared to past work, our main contribution is to provide a shorter and hopefully clearer
proof of the existence of equilibrium in the case of correlated values. Because the proof relies
on the fact that the information effect is small in large economies, it proves monotonicity at the
same time that it proves existence, which may better highlight the role of the assumption that the
economy is large. The idea of our proof is to restrict attention to strategies in a neighborhood
of the (known) equilibrium of the limit game, prove that best responses in the finite economies
are well behaved in this neighborhood, and use that fact to show that a fixed point exists. This
approach may be helpful in other settings where there is a well-defined notion of a limit economy
and where the equilibrium of the limit game is well behaved.

Jackson and Swinkels [7] prove the existence of a (non-trivial) mixed-strategy equilibrium in a
variety of auctions with any fixed number of agents by taking the limits of equilibria in auctions
with a discretized space of bids. They assume private values, and that the distribution of values
is not perfectly correlated, and prove existence by appealing to papers by Jackson et al. [6] and
Reny [10] on the existence of equilibria in discontinuous games. They prove existence of pure-
strategy equilibria only for the case where values are independent. Reny and Perry [11], in an
affiliated interdependent values setting, use an approximation of the strategy space by finite grids
to show that all discretized auctions in sufficiently large economies have an equilibrium with non-
decreasing bid functions; this equilibrium approximates the rational expectations equilibrium of
the continuum limit. This paper was inspired by an early version of Reny and Perry; we obtain a

2 See [12] for a discussion of the importance of establishing a rate.
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somewhat stronger form of monotonicity without the use of grids and with a much shorter proof. 3

Reny and Perry look at economies where all the values of all agents are drawn from the same
distribution. We relax this by allowing for buyers and sellers values to be drawn from a finite
number of distributions, which roughly corresponds to the idea of replica economies in the proof
of the core convergence theorem (Debreu and Scarf [5]).

The �-double auction was introduced to the literature by Chatterjee and Samuelson [3], and by
Wilson [15] for the multilateral case. In the independent private values case, Williams [14] shows
that a pure-strategy equilibrium exists in the buyer’s bid double auction, and Satterthwaite and
Williams [13] provide a rate of convergence. In that auction, sellers always bid their valuations,
which makes the existence argument easier. Rustichini et al. extended the Satterthwaite and
Williams convergence result to general double auctions, showing that if a symmetric equilibrium
exists, it must be close to truth-telling, and provided a bound on rate of convergence. They did
not prove existence; we extend their analysis to the correlated private-values setting in this paper.
Cripps and Swinkels [4] showed that in a broad class of private value auctions all non-trivial
equilibria are asymptotically efficient. Their assumption of “z-independence” is more general
than our assumption of a finite number of buyer and seller classes. 4 Thus the main contribution
of our paper is the existence result; we also extend Rustichini et al. [12] to correlated values.

2. The model

Consider the �-double auction with m buyers and n sellers. The auction mechanism is defined
as follows. Each seller has a single unit of the indivisible good, and each buyer wishes to purchase
one unit. Sellers and buyers have correlated valuations that are private information. The joint
distribution of uncertainty, as well as the structure of the game is common knowledge. Given her
realized value, each player submits a bid to the market. These bids are then ordered from highest
to lowest. The market price is determined to be a weighted average of the nth and (n + 1)th bids,
with weights � and 1 − �, respectively. Buyers whose bids are above and sellers whose bids are
below this market price buy or sell respectively one unit at the prevailing price. In the case of
a tie (i.e., if a bid is equal to the price) some feasible tie-breaking mechanism is applied; the
exact nature of tie breaking will not be relevant. 5 For a more detailed discussion of the �-double
auction please see [12].

We make a number of assumptions about the joint distribution of valuations. We focus on
correlated private values. We will let s be a random variable that captures the common component
of the valuations. The distribution of s is G(s), which is assumed to be concentrated on the unit
interval (the substantive part of this assumption is compact support) and absolutely continuous
with respect to the Lebesgue measure. Conditional on s, the valuations of all buyers and sellers
are independent. To simplify notation, we focus on the case where all buyers’ values are drawn
from the same conditional probability distribution which we denote FB(v|s), and that the values
of all sellers are drawn from FS(v|s).We explain at each step why the argument generalizes to the
case where there are a fixed, finite number of distributions Fk

B, F l
S, with a fixed fraction of agents

3 Athey’s [1] existence theorem for one-sided auctions also makes use of monotonicity to appeal to a fixed point theorem;
she obtains monotonicity from a single-crossing assumption.

4 The assumption implies that there is some residual uncertainty about a given agent’s value even given the values of
an arbitrarily large number of other agents.

5 This mechanism is equivalent to constructing the piecewise linear demand and supply curves from buyers’and sellers’
bids and then finding one of the many possible market clearing prices.
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drawing values from each distribution. Let fB(v|s) and fS(v|s) be the densities of FB and FS . We
assume that all valuations are concentrated on the unit interval, with densities uniformly bounded
away from zero for all s. From these distributions one can calculate the “inverse conditionals.”
Define Hi(s|vi) to be the conditional distribution of s given vi for player i (who can be either
a buyer or a seller) and let hi(s|vi) be the corresponding density. We assume that Hi(s|vi) is
absolutely continuous with respect to the Lebesgue measure, with full support on the set of values
s assumes. Moreover, the density hi(s|vi) is assumed to be uniformly Lipschitz in vi and bounded
away from zero. Note that this specification of correlated values includes the independent private
values case (see [12,14]).

The strategy of agent i (buyer or seller) with private value vi is referred to as xi(.) where
bi = xi(vi) is the bid of agent i. The vector of all agents’ strategies is denoted with x(.) and x−i (.)

refers to the strategies of all players except player i.
In the rest of the paper, we would like to prove that for a large enough number of participants,

this auction game has a symmetric Bayesian equilibrium in pure strategies. Whenever we use the
term “for large enough auctions”, what we have in mind is increasing N = n + m while keeping
� = n/N bounded away from zero and one. Just how large the auction needs to be depends on
how tight these bounds are.

Our goal is to establish the following theorem:

Theorem 1. The �-double auction with correlated private values has a symmetric equilibrium
in increasing pure strategies for all N large enough. In particular, there exists a sequence of
equilibrium profiles xN for N large enough such that

max
i

sup
v

∣∣∣xN
i (v) − v

∣∣∣ = O (1/N) .

Hence in these equilibria, individual bids are of order 1/N close to being fully revealing.

3. Proof steps

3.1. Perturbation

We attack the problem by first finding equilibria of slightly different games. Fix 1 > ε, ��0,
and let us introduce the (ε, �)-perturbed auction. In that game, payoffs are defined as follows:
with probability ε the price p̃ is independent of the bids, and is drawn from a uniform distribution
on [0, 1]. In this event, the expected payoff of a buyer making bid bi is

∫ bi

0 (vi − p) dp and

the expected payoff of a seller is
∫ 1
bi

(p − vi) dp. Note that under this perturbation, as well as
under the �-perturbation introduced below, all agents are allowed to make their desired trades
at the actual price which need not result in a feasible outcome of the unperturbed game. With
remaining probability 1 − ε the mechanism is as follows. The preliminary price p is determined
by the standard �-double auction but the actual price p̃ will be a smooth random variable which
is �-close to the preliminary price. Formally, the perturbed price p̃ is defined as

p̃(p, ��) =

⎧⎪⎨
⎪⎩

2p(�� − 1
2 ) + p if p < �,

2�(�� − 1
2 ) + p if ��p < 1 − �,

2(1 − p)(�� − 1
2 ) + p if 1 − ��p < 1,
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where �� is a uniform random variable on the unit interval. The price perturbation has the
following properties: (1) the random variable p̃ is smooth (absolutely continuous) conditional on
the preliminary price p and is always in the unit interval; (2) the function p̃(p, ��) is continuous
in p; (3) p̃(p, 1

2 ) = p; (4) the perturbed price p̃(p, ��) is strictly increasing in both p and ��
except when p = 0 or p = 1; (5) the perturbed price is �-close to the preliminary price, i.e.,∣∣p̃(p, ��) − p

∣∣ < � always holds. Any other perturbation which satisfies these five properties
is suitable for our purposes. Properties (1), (2) and (4) make the expected payoffs a continuous
function of the bids. Property (3) guarantees says that the median perturbation is zero. Property
(4) also ensures that the event {��|p̃(p, ��) < b} is shrinking as p increases. Property (5) lets
the perturbed game converge to the undisturbed game when we later first take � to zero and then
ε to zero.

In the rest of the paper, we require that buyers submit bids that are not greater than their
valuations, and similarly, we require that sellers play strategies that are not smaller than their
valuations. Because with ε > 0 the strategies thus ruled out are strictly dominated, this assumption
is not substantive, but makes it easier to state some of our results, for example Proposition 1
below, which we would otherwise have to state as applying to best responses to undominated
strategies.

The way the uncertainty is structured in the perturbed auction is as follows. There is a probability
space (�s , �s) which generates the common signal s. For each agent i there is an independent
uniform draw (�0,i , �0,i ) from the unit interval which generates the value vi = vi(�s , �0,i ) of
agent i. There is another probability space (�ε, �ε) that generates the ε probability event and the
uniform price draw. Finally, (��, ��) is a uniform draw from the unit interval, that generates the
�-perturbation and the perturbed price p̃ = p̃(p, ��). The complete probability space is denoted
with (�, �) where � = ∏

i �0,i ×�s ×�� ×�ε and � = ∏
i �0,i ×�s ×�� ×�ε. Elements of �

are referred to with �. We will frequently use the conditional measure �vi of agent i who knows
her private value vi . Our assumptions about the marginal distributions imply that the conditional
probabilities are well defined. We will denote the probability of some event A conditional on vi

with P vi (A) = ∫
A

d�vi (�) and the conditional expectation over some random variable X(�)

with Evi (X) = ∫
X(�) d�vi (�).

Given the realization of uncertainty � an agent i who makes bid bi faces a price p(bi, x−i (.), �).
To simplify notation we will sometimes suppress the dependence of the price on other players’
bidding strategies and write p(bi, �) or simply p(bi).

3.2. Best response of the perturbed game

Proposition 1. In the (ε, �)-perturbed �-double auction, for any � > 0 and any opponent
strategy profile, a best response exists.

Proof. All proofs not given in the main text are presented in the Appendix. �

Because the �-perturbation makes ties a zero probability event, the payoff function of each
bidder becomes continuous. Continuous functions defined on compact sets have a maximum, and
therefore best responses in the perturbed auction exist.

We now show that a best response to “almost truthful” strategies is also “almost truthful”, where
the “modulus of continuity” depends on the number of agents.
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Proposition 2. For any M > 0 there exist M ′, N0, ε0, �0 > 0 such that in a perturbed auction
with N > N0, 0 < � < �0 and 0 < ε < ε0, for all bidders i, if opponents’ strategies satisfy
supv |x−i (v) − v| < M ′, any best response of i satisfies supv |xi(v) − v| < M.

The only reason why a player would bid differently from her valuation is to try to influence the
price. If all players’ bid functions are close to the diagonal and there are many players, then any
bid is unlikely to be pivotal, so the best response must be close to the diagonal as well, though
perhaps not as close as the original profile was.

The following is a simple lemma about the relation between the conditional expectations of a
function given a value vi and the conditional expectation given a different value v′

i .

Lemma 1. There exists a constant K (independent of (ε, �) and N) such that for any positive
function u(s)∫

s

u(s)|h(s|v′
i ) − h(s|vi)| ds�K · |v′

i − vi | ·
∫

s

u(s)h(s|vi) ds. (1)

Proof. We have |h(s|v′
i ) − h(s|vi)|�K · |v′

i − vi |· h(s|vi) for any s and vi, v
′
i because h is

uniformly Lipschitz in the second argument and bounded away from zero. �

Theorem 2. In the (ε, �)-perturbed auction with ε, � > 0, for any bidder i, if a best response xi

to some opponent profile x−i satisfies supvi
|vi − xi(vi)| < 1/4K(K+1), then xi(.) is increasing.

The theorem claims that if a best response is close enough to truth-telling, it has to be increasing.
To get some intuition, consider the first-order condition of a buyer i

T (bi, vi) = (vi − bi)r (bi, vi) − �R (bi, vi) = 0, (2)

where r(bi, vi) is the density of the nth highest bid at bi of all other agents except i, and R(bi, vi)

is the probability that i has the nth highest bid (and is therefore pivotal). The first terms captures
the gain from raising a bid by a small amount (and becoming pivotal in the process) and the second
term captures the cost of doing so. We next replace bi with xi(vi) and take the first derivative
of the first-order condition with respect to vi (that is, we use the Implicit Function Theorem) to
obtain

�T

�bi

x′
i (vi) + �T

�vi

= 0. (3)

We know that �T

�bi
�0 because this is the second-order condition for a local maximum. Therefore,

we only have to show that �T

�vi
> 0 to prove that i’s best response xi(vi) is increasing. We can

calculate

�T

�vi

= r (bi, vi)︸ ︷︷ ︸
Term I

+ (vi − bi)
�r

�vi︸ ︷︷ ︸
Term II

− �
�R

�vi︸ ︷︷ ︸
Term III

. (4)

Also, note that

r(bi, vi) =
∫ 1

0
r(bi, s)h(s|vi) ds and R(bi, vi) =

∫ 1

0
R(bi, s)h(s|vi) ds, (5)
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where r(bi, s) is the conditional density for some fixed s and R(bi, s) is the conditional pivotal
probability. Lemma 1 implies that the partial derivatives �r

�vi
and �R

�vi
are of the same order of

magnitude as r(bi, vi) and R(bi, vi). By the first-order condition (2), R(bi, vi) is the same order
of magnitude as (vi − bi) r (bi, vi). Therefore, as long as vi − bi is small, both terms II and III
are small while term I is large and determines the sign of the partial derivative �T

�vi
which is indeed

positive.
Terms II and III in this analysis capture the “information effect” of increasing a bidder’s

valuation that we discussed in the introduction. Indeed, in the special case of independent private
values terms II and III are zero, because changes in player i’s value do not reveal information
about opponents, and therefore have no effect on the conditional probability and density of the
pivotal bid. In this case, only term I remains and the best response of player i is always increasing
in vi . With correlated values, changes in vi reveal information about opponents, and this affects
optimal bidding through changes in the distribution of pivotal bids as captured by terms II and
III. However, when the best response of i is close to truth-telling, the effect of a change in the
probability of being pivotal is small, because in that event, the difference between the valuation
and the bid, which is the benefit of winning, is small. Note, this argument did not rely on having
only two distributions, one for buyers and one for sellers.

Corollary 1. There exists C > 0 such that for N large enough, � and ε small enough, for all
bidders i, the best response xi to any profile x−i that satisfies supv

∣∣vj − xj (vj )
∣∣ < C for all

j �= i is unique and increasing.

Proof. Combining the previous result and Proposition 2 shows that there exists C > 0 such that
if x−i satisfies the condition of the corollary, any best response xi is increasing. Fix such a C, and
suppose that a buyer i has two best response functions, xi(vi) and x′

i (vi). If these differ on a set
of positive measure, then there is a point of continuity, v0 ∈ (0, 1), of both xi and x′

i , where they
differ, say xi(v0) > x′

i (v0). By continuity, there is a neighborhood of v0 where this inequality
continues to hold. Define x′′

i to be equal to x′
i to the left of v0, and equal to xi to the right of v0.

Clearly x′′
i is a best response, since it is a best response for almost every valuation vi . However,

x′′
i is not increasing; to the left of v0 it approaches xi(v0), and to the right of v0 it approaches

x′
i (v0). Thus x′′

i is a non-increasing best response. This is a contradiction which shows that the
best response xi is unique. �

3.3. Continuity and fixed point

We now introduce the truncated best response mapping of the perturbed game. For the C fixed
above, let X be the set of increasing functions defined on the unit interval with values in the C
wide corridor around the diagonal. Formally,

X = {
xi : [0, 1] → [0, 1] | xi(vi)�xi(v

′
i ) if vi �v′

i , and |xi(vi) − vi | �C ∀vi, v
′
i

}
.

Furthermore, define XB and XS to be the subsets of X corresponding to profiles that are (weakly)
below, respectively above, the diagonal, that is XB = X ∩ {xi : [0, 1] → [0, 1] | xi(vi)�vi} and
XS = X ∩ {xi : [0, 1] → [0, 1] | xi(vi)�vi}.

When all opponents play strategies in X the best response of any player is unique and increasing,
but it need not be in X. The truncated best response map simply truncates this best response by
setting it equal to the bound of the corridor at points vi where it is outside. Formally, if the best
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response of a buyer is xi(vi), the truncated best response at vi is equal to max(xi(v), vi − C, 0).
Importantly, the truncated best response is still increasing, since it is the max (min in the case of
a seller) of increasing functions.

Lemma 2. X, XB and XS are compact, convex subsets of the Banach space L1[0, 1].

Proof. By Helly’s theorem (see Billingsley [2]), X is compact in the weak topology, so from any
sequence of functions in X we can select a subsequence that is converging to some limit function
in all of its points of continuity. But this implies almost everywhere convergence, and that implies
convergence in L1 by Lebesgue’s dominated convergence theorem, since all functions involved
are in X. Since XB and XS are convex and closed subsets of X, the conclusion follows for them
too. �

In the rest of the paper we will focus on symmetric profiles, where all players who have the
same distribution of values use the same bidding function. In the case where all buyers and all
sellers have identical distributions, we only need to keep track of the pair x = (xB(.), xS(.)) of a
buyer’s and a seller’s strategy. Then we have x ∈ XB × XS . With multiple groups of players, we
would use a direct product of more than two sets.

It is clear that XB × XS is a compact, convex subset of the product Banach space L1[0, 1] ×
L1[0, 1]. Now for any positive (ε, �) we have the truncated best response map T BRε,�(.) :
XB × XS → XB × XS . Here T BRε,�(xB, xS) is the pair of truncated best responses for any
buyer respectively seller, when all opponent buyers play xB(.), and all opponent sellers play
xS(.). We are interested in a fixed point of this map, which requires first establishing that the
map is continuous in the L1 topology. Note that the L1 topology restricted to a set of uniformly
bounded functions like X is the same as convergence in measure. This implies that we can focus
on continuity of T BRε,� in measure.

We will now consider a sequence of perturbed games for k = 1, 2, ... . Game k will have
perturbations (εk, �k). Suppose the strategies played in game k are xk = (xk

B, xk
S), and assume

that yk = (yk
B, yk

S) is a best response to xk in game k. We are interested in whether the best
response property is preserved as k goes to infinity. This framework incorporates continuity of
the best response map if the sequence (εk, �k) is constant.

Fix a player i with value vi . The price in game k is a random variable, whose distribution
depends on the bid of player i, bi . To emphasize this dependence, in the following we will denote
the price by pk(bi). The price in the limit game is denoted by p(bi).

Proposition 3. Suppose xk → x in measure, and yk ∈ BRk(xk) converges in measure to y.
Consider the sequence of random variables pk(bi) obtained when i bids bi while opponents play
xk
−i . If for all i and bi , (1) the price pk(bi) converges in probability to p(bi); (2) the distribution

of p(bi) has no atom at bi ; then y ∈ BR(x).

The intuition for this result is the following. Suppose player i is a buyer, and denote the payoff
to this buyer with value vi and bid bi in the kth game by �k(vi, bi). If pk(bi) converges in
probability, it also converges in distribution to p(bi). Hence the distribution function of pk(bi)

converges to that of p(bi) at all points of continuity of the latter, in particular at bi . In addition,
the payoff function to bidding bi equals

�k(vi, bi) =
∫

p<bi

vi − p dRk(p(bi)),
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where Rk(p(bi)) is the price distribution in game k where our buyer bids bi . By weak convergence,
this payoff converges to the limit payoff

�(vi, bi) =
∫

p<bi

vi − p dR(p(bi)).

Note that the integrand is not everywhere continuous, so we cannot directly apply the weak
convergence result; however, the limit distribution function is continuous at bi , so the point of
discontinuity of the integrand at bi does not cause a problem.

The proposition will have a number of applications regarding continuity of the best response
map and taking the limit as � and ε are going to zero. In order to state these applications, we need
to introduce a concept that we call “positive probability of trade.” We say that a player i in the
(ε, �)-perturbed game with opponent profile x−i has positive probability of trade at value vi and
bid bi , if in the 1 − ε probability event when the price is not drawn from a uniform distribution,
there is positive probability that the player gets a positive payoff (gets to trade). Equivalently,
her expected payoff is strictly larger than ε · ∫ bi

0 (vi − p) dp for a buyer, or strictly larger than

ε · ∫ 1
bi

(p − vi) dp for a seller.

Corollary 2. Suppose that either
(a) �k = � > 0 and εk = ε > 0 fixed, or
(b) �k → 0, εk = ε > 0 is fixed, and x is strictly increasing, or
(c) �k = 0, εk → 0, yk = xk and x is strictly increasing for each player i at all values v where

there is positive probability of trade.
Then y ∈ BR(x).

This result shows that when ε, � > 0, T BRε,�(.) is a continuous self-map of a compact, convex
subset of a Banach space.

Theorem 3. There exist ε1, �1, N1 > 0 such that in a perturbed auction with N > N1, 0 < ε < ε1
and 0 < � < �1 the truncated best response map T BRε,�(.) has a fixed point.

Proof. Immediate from Schauder’s fixed point theorem. �

3.4. Relaxing the perturbations

We begin by taking � to zero. By compactness, we can select a convergent subsequence from
the sequence of fixed points associated with some �k → 0. The only reason why the best response
property may fail in the limit is that ties may become a positive probability event when � becomes
zero. This possibility is ruled out by part (a) of the following lemma.

Lemma 3. Let zk be a fixed point of T BRεk,�k and suppose zk → z. If (εk, �k) are such that
either
(a) εk = ε and �k → 0, or
(b) εk → 0 and �k = 0
then z is strictly increasing at all points where there is positive probability of trade in the limiting
game.
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Thus, the limiting profile is everywhere strictly increasing (in the no trade region, this is ensured
by the ε perturbation), so even when � = 0, ties have zero probability. The best response property
of the limiting profile follows:

Proposition 4. In a large enough auction, the truncated best response map T BRε,�(.) with
� = 0 and ε small enough has a fixed point.

Next we relax the truncation.

Proposition 5. In the (ε, 0)-perturbed double auction for all sufficiently large N, any fixed point
of the truncated best response map is a Bayesian Nash equilibrium.

This result follows from the fact that for all sufficiently large auctions the truncation |vi − xi(vi)|
�C does not bind. The proof builds on an argument of Rustichini et al. who show that in the
independent private values case the first-order condition implies that a symmetric equilibrium
must satisfy |vi − xi(vi)| �K3/N for some constant K3. Their argument extends for the cur-
rent correlated values environment, even allowing for the ε-perturbation and multiple buyer and
seller groups, and implies that for large auctions, any symmetric increasing profile that satis-
fies the first-order condition almost everywhere will satisfy |vi − xi(vi)| �C/2. One can then
apply this result for the fixed point of the truncated best response map to prove that the trun-
cation does not bind. To see why, note that in the no trade region for buyers with low values
of vi , the truncated best response is just bidding one’s valuation. Once we enter the trade re-
gion, the only way the truncated best response can start to be truncated is if it hits the truncation
border vi − C. But this never happens, as before hitting the border the first-order condition
holds almost everywhere, which implies that |vi − xi(vi)| �C/2. Hence the trajectory does not
even get below the vi − C/2 border. The details of the proof are contained in supplementary
material at http://www.nyu.edu/jet/supplementary.html. The above argument also implies that
|vi − xi(vi)| �K3/N holds for the profile that is the fixed point of the truncated best response
map. This shows that the distance between valuations and bids is of order O(1/N) in the candidate
equilibrium we consider.

The only remaining step is to take ε to zero. Consider a sequence εk going to zero, and let zk

be an equilibrium of the εk-perturbed game. As usual, we can select a convergent subsequence
with a limit z. By Lemma 3(b), at all points v that have positive probability of trade, z is strictly
increasing. By part (c) of Corollary 2, the best response property is preserved under the limit. It
follows that the limiting profile z is a symmetric, increasing equilibrium of the �-double auction.
We have just proved Theorem 1.

4. Conclusion

Affiliated values: We conjecture that our proof technique can be extended to the affiliated
values case, where the analog of “bidding truthfully” is “bidding one’s value conditional on being
pivotal,” but we have not been able to provide a proof. The main difficulty seems to lie in providing
the appropriate extension of the Rustichini et al. characterization: Showing that in equilibrium
bids are close to the diagonal is easier than showing that bids are close to players’ conditional
expected values.

http://www.nyu.edu/jet/supplementary.html
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Appendix A.

Proof of Proposition 1. Fix a buyer i with valuation vi , and consider the function W(b, c) =
Pr(p(b) < c) where b = bi is the bid of buyer i. We begin by showing that W(b, c) is continuous
in both b and c. Note that

W(b, c) = εc + (1 − ε)

∫
p0∈[0,1]

Pr(p̃(p0, ��) < c) dQ0(p0; b)

where p0 is the preliminary price, Q0(.; b) is the distribution of p0 given that buyer i bids b
(and all opponents use their strategies) and p = p̃(., .) is the �-perturbed price used to calculate
payoffs.

The function p̃(., .) is by definition continuous and strictly increasing in both arguments, except
when p0 equals zero or one. It follows that Pr(p̃(p0, ��) < c) is continuous in c for each p0 �=
0, 1. But the preliminary price is almost surely different from zero and one by our assumption that
all opponent buyers and sellers bid weakly below, respectively above, their valuations. Hence the
integral is also continuous in c. To check continuity in b, note that the map b → Q0(.; b) from
bids to distribution functions is continuous in the weak topology, because the preliminary price
is a continuous function of bids. Because Pr(p̃(p0, ��) < c) is a bounded, continuous function
(in p0), it follows that the integral is continuous in b.

Since W(b, c) is continuous in both arguments and increasing in c, it is easy to see that for
bk → b, we have W(bk, .) → W(b, .) in the uniform topology. The payoff of i from bidding
b equals

∫
p∈[0,1] vi − p dW(b, p) which is easily shown to be continuous in b, by the uniform

convergence of the functions W(b, .). A symmetric argument applies for a seller, or for multiple
buyer and seller groups.

Proof of Proposition 2. Define fmin= min
[
infv,s fB(v|s), infv,s fS(v|s)] and fmax= max[

supv,s fB(v|s), supv,s fS(v|s)] which constitute a lower and upper bound for the conditional
densities of buyers and sellers. By assumption, 0 < fmin �fmax < ∞.

Lemma 4. 6 There exists K2 independent of N, ε and �, such that with ε, � > 0, for all i, vi and
bi , if opponents’ strategies are M ′ close to the diagonal while player i bids bi , then

Pr(bi is the (n + 1)th bid|vi) · fmax

fmin
· bi + 3M ′

1 − bi − 3M ′ · K2 �Pr(bi is the nth bid|vi).

6 We thank an anonymous referee for suggesting the current proof of this lemma, which is much shorter than our earlier
version.
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Proof. Fix s, and let qj denote the probability that player j bids above bi conditional on s. Then

qj

1 − qj

� fmin

fmax
· 1 − bi − 3M ′

bi + 3M ′

for all j. For if j has value greater than bi + 2M ′, then she certainly bids above bi , because
bids are M ′ close to valuations. Thus the conditional probability that j bids above bi is at least
fmin · (1 − bi − 3M ′), and likewise, the conditional probability that j bids below bi is at most
fmax · (bi + 3M ′).

The probability that n − 1 opponents bid above bi is⎛
⎝∏

j �=i

(1 − qj )

⎞
⎠ ·

∑
Cn−1

⎡
⎣ ∏

j∈Cn−1

qj

1 − qj

⎤
⎦ ,

where the summation is over all subsets Cn−1 of n−1 opponents (excluding player i). Multiplying
each term in the above sum by the lower bound for qj /(1 − qj ) will be an underestimate of the

product
∏

j∈Cn

qj /(1 − qj ) for some subset of n opponents Cn. Note that there are m subsets of

opponents Cn that contain any given set with n − 1 elements Cn−1, because the total number of
opponents is m + n − 1. Hence

m · fmin

fmax
· 1 − bi − 3M ′

bi + 3M ′ ·
⎛
⎝∏

j �=i

(1 − qj )

⎞
⎠ ·

∑
Cn−1

⎡
⎣ ∏

j∈Cn−1

qj

1 − qj

⎤
⎦

�n

⎛
⎝∏

j �=i

(1 − qj )

⎞
⎠ ·

∑
Cn

∏
j∈Cn

qj

1 − qj

.

The factor n on the right-hand side is included because all sets in Cn are covered n times, as each
such set has n different subsets with n − 1 elements. Taking expectations over s conditional on
vi , the above inequality can be written as

Pr(bi is the nth bid|vi)�Pr(bi is the (n + 1)th bid|vi) · fmax

fmin
· bi + 3M ′

1 − bi − 3M ′ · n

m
.

Since n/m is bounded away from zero and infinity, the claim follows. This argument can easily
be extended for more general replica economies with several different conditional distributions.
The only change is that fmax and fmin have to be redefined and the exact values of these terms
are irrelevant for the main results. �

To prove the proposition, define M = kM ′. We need to find a k such that the result holds.
Suppose a buyer i has optimal bid bi , and bi < vi − M (otherwise we are done). We consider
whether the buyer would prefer to bid instead bi + 4M ′. If yes, that would be a contradiction,
showing that the optimal bid in fact has to be at least M close to the diagonal.

Note that for any opponent bidding function xj (.) satisfying the condition of Lemma 4, we
have the set inclusion x−1

j ((bi, bi + 3M ′)) ⊇ (bi + M ′, bi + 2M ′). This is because any value in
the interval on the right-hand side would induce a bid (both in the case of a buyer and a seller)
that is contained in the interval (bi, bi + 3M ′).

Assume that the buyer bids bi +4M ′. Her gain will be an increased probability of winning. This
gain is realized for example if her bid was the (n + 1)th highest previously, the �-perturbation
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biased the final price upwards, and by increasing the bid, she overtook some opponent by sufficient
distance so that even the �-perturbation cannot make her lose. The size of the gain in this case
is at least the distance between her current bid and her value vi , minus possibly �. Therefore the
following formula is a lower bound for the expected gain from raising the bid

1

2
Pr(bi is the (n + 1)th bid and ∃ opponent value in (bi + M ′, bi + 2M ′)) · (k − 5)M ′.

To see why, note that with probability 1/2 the � perturbation is biased upwards. Now if there is
an opponent value in (bi + M ′, bi + 2M ′), that leads to a bid no greater than bi + 3M ′. If � is
small enough relative to M ′, then the realized price will still be lower than bi + 4M ′, thus our
buyer wins. She wins at least (k − 4)M ′ − � > (k − 5)M ′.

Next note that the probability in this formula will be arbitrarily close to Pr(bi is the (n + 1)th
bid) as the auction size increases in the sense that

Pr(bi is the (n + 1)th bid and ∃ opponent value in (bi + M ′, bi + 2M ′))
Pr(bi is the (n + 1)th bid )

→ 1.

Therefore the gain is bounded from below by Pr(bi is the (n + 1)th bid) · (k − 5)M ′/4 for a large
enough auction.

Next consider the loss from increasing the bid. A loss will take place when bi was exactly the
nth bid; the size of the loss is bounded from above by 4M ′. Thus the total expected loss is not
more than Pr(bi is the nth bid) · 4M ′.

We need to compare our bounds for the gain and the loss. Using Lemma 4, the gain will be
greater than the loss if

Pr(bi is the (n + 1)th bid) · (k − 5)M ′

4

�Pr(bi is the (n + 1)th bid) · fmax

fmin
· bi + 3M ′

1 − bi − 3M ′ K2 · 4M ′

where K2 does not vary with the size of the auction. This inequality is implied by

(k − 5)

4
�4K2

fmax

fmin
·
(

2

kM ′ − 1

)
for k large enough. For k large, this condition is satisfied when

k2 �64K2 · fmax

fmin
· 1

M ′ .

We can choose k large so that this final inequality holds. Moreover, we can choose k such that
kM ′ = M is still going to zero as M ′ is going to zero (because k is of order M ′−1/2). For the
appropriately chosen M the above argument shows that bi + 4M ′ is a better bid than bi .

Proof of Theorem 2. We show the claim by contradiction. Assume there is an agent i and two
private values vi < v′

i with corresponding best responses bi and b′
i such that bi > b′

i .
Incentive compatibility implies

P vi (p(bi, �) < bi)E
vi [vi − p(bi, �)|p(bi, �) < bi]

�P vi (p(b′
i , �) < b′

i )E
vi

[
vi − p(b′

i , �)|p(b′
i , �) < b′

i

]
(6)
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and

P v′
i (p(b′

i , �) < b′
i )E

v′
i
[
v′
i − p(b′

i , �)|p(b′
i , �) < b′

i

]
�P v′

i (p(bi, �) < bi)E
v′
i
[
v′
i − p(bi, �)|p(bi, �) < bi

]
. (7)

We can rewrite these conditions as follows

0 �
[∫

p(b′
i ,�)<b′

i

(
vi − p(b′

i , �)
)

d�vi (�) −
∫

p(bi ,�)<bi

(vi − p(bi, �)) d�vi (�)

]

0 � −
[∫

p(b′
i ,�)<b′

i

(
v′
i − p(b′

i , �)
)

d�v′
i (�) −

∫
p(bi ,�)<bi

(
v′
i − p(bi, �)

)
d�v′

i (�)

]
.

We introduce the notation �vi = vi − v′
i as well as the operators �vi

A(ṽ) = A(vi) − A(v′
i )

and �bi
A(b̃) = A(bi) − A(b′

i ). We now add the two inequalities and organize terms to obtain

−�vi

[∫
p(b′

i ,�)<b′
i

d�v′
i (�)−

∫
p(bi ,�)<bi

d�v′
i (�)

]

��vi

[∫
p(b′

i ,�)<b′
i

(
vi − p(b′

i , �)
)

d�ṽ(�)−
∫

p(bi ,�)<bi

(vi − p(bi, �)) d�ṽ(�)

]
.

(8)

Further reorganization yields

�vi�bi
P v′

i

(
p(b̃, �) < b̃

)

��vi

⎡
⎢⎢⎢⎢⎣
∫

p(b′
i ,�)<b′

i

(
p(bi, �) − p(b′

i , �)
)

d�ṽ(�)︸ ︷︷ ︸
Term I

−
∫

p(bi ,�)<bi
p(b′

i
,�) � b′

i

(vi − p(bi, �)) d�ṽ(�)

︸ ︷︷ ︸
Term II

⎤
⎥⎥⎥⎥⎥⎦ . (9)

On the right hand side we made use of the monotonicity of the disturbance � which ensures that
the �-set p(bi, �) < bi is larger than p(b′

i , �) < b′
i (note that bi > b′

i by assumption).
Term I is non-negative for all �. By the argument in Lemma 1 , we have∣∣∣∣∣�vi

∫
p(b′

i ,�)<b′
i

(
p(bi, �) − p(b′

i , �)
)

d�ṽ(�)

∣∣∣∣∣
�K · |�vi | ·

∫
p(b′

i ,�)<b′
i

∣∣p(bi, �) − p(b′
i , �)

∣∣ d�vi (�)

for some constant K which is independent of vi, v
′
i , bi, b

′
i . Now (6) is easily seen to imply that∫

p(b′
i ,�)<b′

i

(
p(bi, �) − p(b′

i , �)
)

d�vi (�)�
∫

p(bi ,�)<bi
p(b′

i
,�) � b′

i

(vi − p(bi, �)) d�vi (�).
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Furthermore, Lemma 1 also allows us to bound term II∣∣∣∣∣∣�vi

∫
p(bi ,�)<bi
p(b′

i
,�) � b′

i

(vi − p(bi, �)) d�ṽ(�)

∣∣∣∣∣∣ �K · |�vi | ·
∫

p(bi ,�)<bi
p(b′

i
,�) � b′

i

(vi − p(bi, �)) d�vi (�).

It follows from all of these above that the right-hand side RHS of (9) can be estimated as

|RHS| �2K |�vi |
∫

p(bi ,�)<bi
p(b′

i
,�) � b′

i

(vi − p(bi, �)) d�vi (�). (10)

The integral is evaluated over an �-set where the inequality vi > bi > p(bi, �) > p(b′
i , �) > b′

i

holds. We therefore know that vi − p(bi, �) < vi − b′
i . This allows us to simplify the above

inequality further

|RHS| �2K |�vi |
(
vi − b′

i

) ∫
p(bi ,�)<bi
p(b′

i
,�) � b′

i

d�vi (�)

By Lipschitz continuity we know that
∣∣h(s|vi) − h(s|v′

i )
∣∣ �Kh(s|v′

i ). This allows us to simplify
the inequality further to get

|RHS| � 2K(K + 1) |�vi |
(
vi − b′

i

) ∫
p(bi ,�)<bi
p(b′

i
,�) � b′

i

d�v′
i (�)

= 2K(K + 1) |�vi |
(
vi − b′

i

)
�bi

P v′
i

(
p(b̃, �) < b̃

)
. (11)

Now note that |�vi | = −�vi so that we can plug it back into (9) and obtain

�vi�bi
P v′

i

(
p(b̃, �) < b̃

)
�2K(K + 1)�vi

(
vi − b′

i

)
�bi

P v′
i

(
p(b̃, �) < b̃

)
which yields

�vi�bi
P v′

i

(
p(b̃, �) < b̃

) [
1 − 2K(K + 1)(�vi + v′

i − b′
i )
]
�0.

We can actually choose �vi < 1
4K(K+1)

because if agent i’s best response function is non-
monotonic then we can find v and v′ arbitrarily close such that vi < v′

i and bi > b′
i . Therefore

the final inequality implies that as long as

v′
i − b′

i <
1

4K(K + 1)
(12)

holds we have �bi
P v′

i

(
p(b̃|�) < b̃

)
�0. But this implies bi �b′

i which is a contradiction.

Proof of Proposition 3. The argument in the main text shows that the payoff to bidding bi in the
kth game converges to that of bidding bi in the limit game. That is, the payoff function converges
pointwise. However, this is not quite enough to show that the maximum also converges.

Let bk
i → bi . We claim that in this case, �k(vi, b

k
i ) → �(vi, bi), that is, the payoff from

bidding bk
i in game k converges to that of bidding bi in the limiting game. The proof is as follows.
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First, rewrite the payoff as an integral on the probability space:

�k(vi, b
k
i ) =

∫
{pk(bk

i )<bi }
vi − pk(bk

i , �) d�vi (�) ,

where pk(bk
i , �) is the price (a random variable) in game k. Denote the domain of integration in

the above formula by Zk = {�|pk(bk
i , �) < bk

i }, and fix � a small positive number. Then

�k(vi, b
k
i ) =

∫
{p(bi )<bi−�}∩Zk

vi − pk(bk
i , �) d�vi (�)

+
∫

{bi−��p(bi )�bi+�}∩Zk

vi − pk(bk
i , �) d�vi (�)

+
∫

{p(bi )>bi+�}∩Zk

vi − pk(bk
i , �) d�vi (�) .

Because the distribution of p(bi) is atomless, the middle term can be made arbitrarily small by an
appropriate choice of �. Fix a �. We also have that pk(bk

i , �) converges to p(bi, �) in probability;
therefore for k large enough (given �), outside of a small probability event we will have that
� ∈ {p(bi) < bi − �} implies � ∈ Zk . Therefore, controlling for the small approximation error,
the first term can be considered to be integrated over {p(bi) < bi − �}. Likewise, for k large,
the domain of integration of the final term will have arbitrarily small measure. Therefore we can
write that

�k(vi, b
k
i ) = small(�) + small(k, given �) +

∫
{p(bi )<bi−�}

v − pk(bk
i , �) d�vi (�) .

Furthermore, because the price distribution is atomless, the domain of integration in this formula
can be replaced by {p(bi) < bi}; that introduces approximation errors smaller than what we
currently have. Finally, because pk(bk

i , �) converges in probability to p(b, �), we can write that

�k(vi, b
k
i ) = small(�) + small(k, given �) +

∫
{p(bi )<bi }

v − p(bi, �) d�vi (�)

= small(�) + small(k, given �) + �(vi, bi).

This is what we wanted to prove. By choosing � small enough, and then accordingly k large
enough, we can show that �k(vi, b

k
i ) gets arbitrarily close to �(vi, bi).

To get the statement of the proposition, assume that bk
i is the best response in game k, but bi ,

the limit, is not a best response in the limiting game. Then there is a b′
i that does better then bi , so

that �(vi, bi) < �(vi, b
′
i ). However, in game k it has to be the case that �k(vi, b

k
i )��k(vi, b

′
i ).

Taking k to infinity, the left-hand side converges to �(vi, bi), and the right-hand side to �(vi, b
′
i ),

thus giving �(vi, bi)��(vi, b
′
i ). This is a contradiction.

Proof of Corollary 2. We will use Proposition 3. The convergence in probability of the condi-
tional prices is obvious in all three cases, given that the bid functions converge in measure, and
that the perturbations are continuous. Fixing a buyer, we only need to check whether the limiting
price p(bi) has a distribution that is atomless at bi . This is obvious in case (a) because the price
distribution is completely atomless by the perturbation. In case (b), it follows from the fact that
all opponent profiles are strictly increasing. Indeed, any atom that p(bi) may have at bi has to
come from some opponent bidding bi with positive probability; this is ruled out.

In case (c), suppose bk
i converges to bi , and bi is not a best response in the limit game, so

b′
i does better. We can assume that no opponent bids b′

i with positive probability, otherwise we
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could have chosen b′′
i that is a little bit larger than b′

i , and still get a higher payoff than that earned
by bi . Therefore, by the argument of the proposition, �k(vi, b

′
i ) → �(vi, b

′
i ). Now if no other

player bids b with positive probability, then by the argument of the proposition we also have that
�k(vi, b

k
i ) → �(vi, bi), which yields a contradiction. Thus the only problem we may have is

that some opponent bids bi with positive probability in the limit game. If this opponent is a buyer,
then by assumption (c) no trade takes place for a buyer with bid b in the limit game. But then as k
goes to infinity, the payoff to bidding bk

i must be vanishingly small. If the payoff to bidding b′
i is

positive in the limit game, then by �k(vi, b
′
i ) → �(vi, b

′
i ) bidding b′

i for k large enough is better
than bidding bk

i . This is a contradiction.
If the opponent who bids bi with positive probability is a seller, then that seller faces no

trade in the limit game. Thus all buyers have to bid below bi with probability one. But note that
bi = yB(vi) = xB(vi). By assumption, xB(vi) is increasing here, because buyers trade with
positive probability at this stage. So xB(

vi+1
2 ) > xB(vi) = bi , but then our seller who bids b

should get to trade with positive probability. This is a contradiction. Note how this final argument
hinges on the fact that the xk profiles were already equilibria of game k.

Proof of Lemma 3. Suppose not, and let [vi, v
′
i] be an interval where the buyer’s bid function

is constant bi . This has to be a region where the truncated and the non-truncated best responses
are the same. Then for any � > 0, there is k large enough such that the kth bid function will be
within a distance of � from the plateau in the range [vi, v

′
i]. Because there is positive probability

of trade, for k large enough, with probability bounded away from zero there is a seller’s bid below
bk
i (vi). Hence the event that all buyers have values in [vi, v

′
i] and all sellers bid below bk

i (vi) has
probability bounded away from zero.

But then by increasing her bid by 2�, a buyer of value vi could get an incremental probability
of winning that is bounded away from zero. For � small, the cost of this bid increment in terms
of price impact is arbitrarily small. Thus for k large bidding bk

i (vi) cannot be optimal for a buyer
of value vi . This is a contradiction. The proof extends to multiple groups because a positive
probability of trade implies that there exists an event with probability bounded away from zero
where bidding bk

i (vi) + 2� and thus beating all other buyers of the same group would deliver the
good to vi but bidding only bk

i (vi) would not.

Proof of Proposition 4. Fix ε > 0 and pick a sequence �k → 0, and let zk be a fixed point of
T BRk . By compactness, the sequence zk has a convergent subsequence. By relabeling, we can
assume that zk converges to z. Now at all points where there is positive probability of trade, z is
strictly increasing. At a point where there is zero probability of trade, as k goes to infinity there
has to be vanishingly small probability of trade. Hence for k large, the impact of trading with
opponents in the (1 − ε) probability event has vanishingly small impact on the best response of a
bidder. Thus at points with zero probability of trade, as k goes to infinity bidders will only consider
the ε probability event and therefore in the limit they have to bid their own value. It follows that
z is everywhere strictly increasing.

Then by Lemma 3, we have that z ∈ T BR(z). To see why, note that wk = BRk(zk) also has
a convergent subsequence. The limit of that sequence, w, has to be a best response to z because
z is everywhere strictly increasing. But then the limit of T BRk(zk) = T (wk) has to be T (w),
as truncation is a continuous operation. On the other hand, T BRk(zk) = T (wk) = zk , thus the
limit of zk , which is z, is equal to T (w). It follows that z = T (w), in other words, z is indeed a
truncated best response to z.
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Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version at 10.1016/j.jet.
2005.07.014.
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